penfever's picture
End of training
36abe4c verified
metadata
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2-7B
tags:
  - axolotl
  - generated_from_trainer
datasets:
  - penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct
model-index:
  - name: qwen-2-7b-WildChat-250k-llama-3.1-8b-instruct
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: Qwen/Qwen2-7B
trust_remote_code: true

strict: false

chat_template: llama3
datasets:
  - path: penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct
    type: chat_template
    split: train[:25%]
    field_messages: conversation
    message_field_role: role
    message_field_content: content

dataset_prepared_path: /scratch/bf996/axolotl/datasets/wildchat-250k-llama-3.1-8b-instruct
val_set_size: 0.02
output_dir: /scratch/bf996/axolotl/outputs/qwen-2-7b-wildchat-250k-llama-3.1-8b-instruct

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

wandb_project: lm-evals
wandb_entity:
wandb_watch:
wandb_name: qwen-2-7b-WildChat-llama-3.1-8b-instruct
wandb_log_model:
hub_model_id: penfever/qwen-2-7b-WildChat-250k-llama-3.1-8b-instruct


gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|finetune_right_pad_id|>
  eos_token: <|eot_id|>
  bos_token: <|begin_of_text|>

qwen-2-7b-WildChat-250k-llama-3.1-8b-instruct

This model is a fine-tuned version of Qwen/Qwen2-7B on the penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct dataset. It achieves the following results on the evaluation set:

  • Loss: 6.7290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
8.1514 0.9998 2815 6.7290

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0