metadata
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2-7B
tags:
- axolotl
- generated_from_trainer
datasets:
- penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct
model-index:
- name: qwen-2-7b-WildChat-250k-llama-3.1-8b-instruct
results: []
See axolotl config
axolotl version: 0.6.0
base_model: Qwen/Qwen2-7B
trust_remote_code: true
strict: false
chat_template: llama3
datasets:
- path: penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct
type: chat_template
split: train[:25%]
field_messages: conversation
message_field_role: role
message_field_content: content
dataset_prepared_path: /scratch/bf996/axolotl/datasets/wildchat-250k-llama-3.1-8b-instruct
val_set_size: 0.02
output_dir: /scratch/bf996/axolotl/outputs/qwen-2-7b-wildchat-250k-llama-3.1-8b-instruct
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
wandb_project: lm-evals
wandb_entity:
wandb_watch:
wandb_name: qwen-2-7b-WildChat-llama-3.1-8b-instruct
wandb_log_model:
hub_model_id: penfever/qwen-2-7b-WildChat-250k-llama-3.1-8b-instruct
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
bos_token: <|begin_of_text|>
qwen-2-7b-WildChat-250k-llama-3.1-8b-instruct
This model is a fine-tuned version of Qwen/Qwen2-7B on the penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct dataset. It achieves the following results on the evaluation set:
- Loss: 6.7290
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
8.1514 | 0.9998 | 2815 | 6.7290 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0