WildChat-50m Models
Collection
All model checkpoints associated with the WildChat-50m paper, including Re-Wild, DPO, and TULU3.
•
58 items
•
Updated
axolotl version: 0.6.0
base_model: meta-llama/Meta-Llama-3.1-8B
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
strict: false
chat_template: llama3
datasets:
- path: allenai/WildChat-1M-Full
type: chat_template
split: train[:50%]
field_messages: conversation
message_field_role: role
message_field_content: content
dataset_prepared_path: /scratch/bf996/axolotl/datasets/wildchat-500k
val_set_size: 0.02
output_dir: /scratch/bf996/axolotl/outputs/llama-3-8b-wildchat-500k
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: lm-evals
wandb_entity:
wandb_watch:
wandb_name: Llama-3-8B-WildChat
wandb_log_model:
hub_model_id: penfever/Llama-3-8B-WildChat-500k
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the allenai/WildChat-1M-Full dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.922 | 1.0 | 1186 | 0.8603 |
Base model
meta-llama/Llama-3.1-8B