You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: meta-llama/Meta-Llama-3.1-8B

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

strict: false

chat_template: llama3
datasets:
  - path: penfever/allenai_WildChat-1M-Full-Qwen_Qwen2.5-72B-Instruct
    type: chat_template
    split: train[:25%]
    field_messages: conversation
    message_field_role: role
    message_field_content: content

dataset_prepared_path: /scratch/bf996/axolotl/datasets/wildchat-250k-qwen2-72b
val_set_size: 0.02
output_dir: /scratch/bf996/axolotl/outputs/llama-3-8b-wildchat-250k-qwen2-72b

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: lm-evals
wandb_entity:
wandb_watch:
wandb_name: Llama-3-8B-WildChat-qwen2-72b
wandb_log_model:
hub_model_id: penfever/Llama-3-8B-WildChat-250k-qwen2-72b


gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
  fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:
  pad_token: <|finetune_right_pad_id|>
  eos_token: <|eot_id|>

Llama-3-8B-WildChat-250k-qwen2-72b

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the penfever/allenai_WildChat-1M-Full-Qwen_Qwen2.5-72B-Instruct dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6975

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.625 0.9990 895 0.6975

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
8.03B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for nyu-dice-lab/Llama-3-8B-WildChat-250k-qwen2-72b

Finetuned
(876)
this model

Dataset used to train nyu-dice-lab/Llama-3-8B-WildChat-250k-qwen2-72b

Collection including nyu-dice-lab/Llama-3-8B-WildChat-250k-qwen2-72b