sarahyurick's picture
Update README.md
cf296cf verified
|
raw
history blame
6.18 kB
metadata
tags:
  - model_hub_mixin
  - pytorch_model_hub_mixin
license: other

Model Overview

This is a multilingual text classification model that can enable data annotation, creation of domain-specific blends and the addition of metadata tags. The model classifies documents into one of 26 domain classes:

'Adult', 'Arts_and_Entertainment', 'Autos_and_Vehicles', 'Beauty_and_Fitness', 'Books_and_Literature', 'Business_and_Industrial', 'Computers_and_Electronics', 'Finance', 'Food_and_Drink', 'Games', 'Health', 'Hobbies_and_Leisure', 'Home_and_Garden', 'Internet_and_Telecom', 'Jobs_and_Education', 'Law_and_Government', 'News', 'Online_Communities', 'People_and_Society', 'Pets_and_Animals', 'Real_Estate', 'Science', 'Sensitive_Subjects', 'Shopping', 'Sports', 'Travel_and_Transportation'

It supports 52 languages (English and 51 other languages) : 'ar', 'az', 'bg', 'bn', 'ca', 'cs', 'da', 'de', 'el', 'es', 'et', 'fa', 'fi', 'fr', 'gl', 'he', 'hi', 'hr', 'hu', 'hy', 'id', 'is', 'it', 'ka', 'kk', 'kn', 'ko', 'lt', 'lv', 'mk', 'ml', 'mr', 'ne', 'nl', 'no', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sq', 'sr', 'sv', 'ta', 'tr', 'uk', 'ur', 'vi', 'ja', 'zh'

Code	Language Name
ar	Arabic
az	Azerbaijani
bg	Bulgarian
bn	Bengali
ca	Catalan
cs	Czech
da	Danish
de	German
el	Greek
es	Spanish
et	Estonian
fa	Persian
fi	Finnish
fr	French
gl	Galician
he	Hebrew
hi	Hindi
hr	Croatian
hu	Hungarian
hy	Armenian
id	Indonesian
is	Icelandic
it	Italian
ka	Georgian
kk	Kazakh
kn	Kannada
ko	Korean
lt	Lithuanian
lv	Latvian
mk	Macedonian
ml	Malayalam
mr	Marathi
ne	Nepali
nl	Dutch
no	Norwegian
pl	Polish
pt	Portuguese
ro	Romanian
ru	Russian
sk	Slovak
sl	Slovenian
sq	Albanian
sr	Serbian
sv	Swedish
ta	Tamil
tr	Turkish
uk	Ukrainian
ur	Urdu
vi	Vietnamese
ja	Japanese
zh	Chinese

License

This model is released under the NVIDIA Open Model License Agreement.

References

Model Architecture

  • The model architecture is Deberta V3 Base
  • Context length is 512 tokens

How To Use in NVIDIA NeMo Curator

NeMo Curator improves generative AI model accuracy by processing text, image, and video data at scale for training and customization. It also provides pre-built pipelines for generating synthetic data to customize and evaluate generative AI systems.

The inference code for this model is available through the NeMo Curator GitHub repository. Check out this example notebook to get started.

Input & Output

Input

  • Input Type: Text
  • Input Format: String
  • Input Parameters: 1D
  • Other Properties Related to Input: Token Limit of 512 tokens

Output

  • Output Type: Text Classifications
  • Output Format: String
  • Output Parameters: 1D
  • Other Properties Related to Output: None

The model takes one or several paragraphs of text as input. Example input:

最年少受賞者はエイドリアン・ブロディの29歳、最年少候補者はジャッキー・クーパーの9歳。最年長受賞者、最年長候補者は、アンソニー・ホプキンスの83歳。
最多受賞者は3回受賞のダニエル・デイ=ルイス。2回受賞経験者はスペンサー・トレイシー、フレドリック・マーチ、ゲイリー・クーパー、ダスティン・ホフマン、トム・ハンクス、ジャック・ニコルソン(助演男優賞も1回受賞している)、ショーン・ペン、アンソニー・ホプキンスの8人。なお、マーロン・ブランドも2度受賞したが、2度目の受賞を拒否している。最多候補者はスペンサー・トレイシー、ローレンス・オリヴィエの9回。
死後に受賞したのはピーター・フィンチが唯一。ほか、ジェームズ・ディーン、スペンサー・トレイシー、マッシモ・トロイージ、チャドウィック・ボーズマンが死後にノミネートされ、うち2回死後にノミネートされたのはディーンのみである。
非白人(黒人)で初めて受賞したのはシドニー・ポワチエであり、英語以外の演技で受賞したのはロベルト・ベニーニである。

The model outputs one of the 26 domain classes as the predicted domain for each input sample. Example output:

Arts_and_Entertainment 

Software Integration

  • Runtime Engine: Python 3.10 and NeMo Curator
  • Supported Hardware Microarchitecture Compatibility: NVIDIA GPU, Volta™ or higher (compute capability 7.0+), CUDA 12 (or above)
  • Preferred/Supported Operating System(s): Ubuntu 22.04/20.04

Training, Testing, and Evaluation Dataset

Training data

  • 1 million Common Crawl samples, labeled using Google Cloud’s Natural Language API
  • 500k Wikipedia articles, curated using Wikipedia-API

Training steps

  • Translate the English training data into 51 other languages. Each sample has 52 copies.
  • During training, randomly pick one of the 52 copies for each sample.
  • During validation, evaluate the model on validation set 52 times, to get the validation score for each language.

Evaluation

  • Metric: PR-AUC

Inference

  • Engine: PyTorch
  • Test Hardware: V100

Ethical Considerations

NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.

Please report security vulnerabilities or NVIDIA AI Concerns here.