NeMo
Safetensors
llama
Dimitre's picture
Fixing type at model_path param
46f3e70 verified
|
raw
history blame
6.03 kB
metadata
license: other
license_name: nvidia-open-model-license
license_link: >-
  https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf

Llama-3.1-Minitron-4B-Width-Base

Model Overview

Llama-3.1-Minitron-4B-Width-Base is a base text-to-text model that can be adopted for a variety of natural language generation tasks. It is obtained by pruning Llama-3.1-8B; specifically, we prune model embedding size, number of attention heads, and MLP intermediate dimension. Following pruning, we perform continued training with distillation using 94 billion tokens to arrive at the final model; we use the continuous pre-training data corpus used in Nemotron-4 15B for this purpose.

This model is ready for commercial use.

Model Developer: NVIDIA

Model Dates: Llama-3.1-Minitron-4B-Width-Base was trained between July 29, 2024 and Aug 3, 2024.

License

This model is released under the NVIDIA Open Model License Agreement.

Model Architecture

Llama-3.1-Minitron-4B-Width-Base uses a model embedding size of 3072, 32 attention heads, MLP intermediate dimension of 9216, with 32 layers in total. Additionally, it uses Grouped-Query Attention (GQA) and Rotary Position Embeddings (RoPE).

Architecture Type: Transformer Decoder (Auto-Regressive Language Model)

Network Architecture: Llama-3.1

Input Type(s): Text

Input Format(s): String

Input Parameters: None

Other Properties Related to Input: Works well within 8k characters or less.

Output Type(s): Text

Output Format: String

Output Parameters: 1D

Other Properties Related to Output: None

Usage

Pull requests to support this model in Hugging Face Transformers are currently under review (#32495 and #32502) and are expected to be merged soon. In the meantime, please follow the installation instructions below:

# Fetch PR 32502
$ git clone -b suhara/llama-kv-channels --single-branch https://github.com/suhara/transformers.git && cd transformers

# Fetch changes from PR 32495
$ git fetch https://github.com/suiyoubi/transformers.git aot/head_dim_rope && git cherry-pick FETCH_HEAD --strategy-option theirs

# Install transformers
$ pip install -e .

We can now run inference on this model:

import torch
from transformers import AutoTokenizer, LlamaForCausalLM

# Load the tokenizer and model
model_path = "nvidia/Llama-3.1-Minitron-4B-Width-Base"
tokenizer = AutoTokenizer.from_pretrained(model_path)

device = 'cuda'
dtype = torch.bfloat16
model = LlamaForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)

# Prepare the input text
prompt = 'Complete the paragraph: our solar system is'
inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)

# Generate the output
outputs = model.generate(inputs, max_length=20)

# Decode and print the output
output_text = tokenizer.decode(outputs[0])
print(output_text)

Software Integration

Runtime Engine(s):

  • NeMo 24.05

Supported Hardware Microarchitecture Compatibility:

  • NVIDIA Ampere
  • NVIDIA Blackwell
  • NVIDIA Hopper
  • NVIDIA Lovelace

[Preferred/Supported] Operating System(s):

  • Linux

Dataset & Training

Data Collection Method by Dataset: Automated

Labeling Method by Dataset: Not Applicable

Properties: The training corpus for Llama-3.1-Minitron-4B-Width-Base consists of English and multilingual text, as well as code. Our sources cover a variety of document types such as: webpages, dialogue, articles, and other written materials. The corpus spans domains including legal, math, science, finance, and more. In our continued training set, we introduce a small portion of question-answering, and alignment style data to improve model performance.

Data Freshness: The pretraining data has a cutoff of June 2023.

Evaluation Results

Overview

5-shot performance. Language Understanding evaluated using Massive Multitask Language Understanding:

Average
60.5

Zero-shot performance. Evaluated using select datasets from the LM Evaluation Harness with additions:

HellaSwag Winogrande GSM8K ARC-Challenge XLSum
76.1 73.5 41.2 55.6 28.7

Code generation performance. Evaluated using MBPP:

Score
32.0

Inference

Engine: TensorRT-LLM

Test Hardware: NVIDIA A100

DType: BFloat16

Limitations

The model was trained on data that contains toxic language, unsafe content, and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.

Ethical Considerations

NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.

Please report security vulnerabilities or NVIDIA AI Concerns here.

References