ko-deplot / README.md
nuua's picture
Update README.md
fb952a5
|
raw
history blame
2.2 kB
---
license: apache-2.0
language:
- ko
- en
pipeline_tag: visual-question-answering
tags:
- text2text-generation
base_model: google/deplot
---
# **Ko-Deplot**
Ko-Deplot is a korean Visual-QA model based on the Google's Pix2Struct architecture. It was fine-tuned from [Deplot](https://huggingface.co/google/deplot), using korean chart image-text pairs.
Ko-Deplot์€ Google์˜ Pix2Struct ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ•œ๊ตญ์–ด Visual-QA ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. [Deplot](https://huggingface.co/google/deplot) ๋ชจ๋ธ์„ ํ•œ๊ตญ์–ด ์ฐจํŠธ ์ด๋ฏธ์ง€-ํ…์ŠคํŠธ ์Œ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•˜์—ฌ ํŒŒ์ธํŠœ๋‹ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
- **Developed by:** [NUUA](https://www.nuua.ai/en/): Yohan Kim, Jiyou Shin, Robin Lee
- **Model type:** Visual Question Answering
- **License:** apache-2.0
- **Finetuned from model:** [google/deplot](https://huggingface.co/google/deplot)
# **Model Usage**
You can run a prediction by querying an input image together with a question as follows:
```python
from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration
from PIL import Image
processor = Pix2StructProcessor.from_pretrained('nuua/Ko-Deplot')
model = Pix2StructForConditionalGeneration.from_pretrained('nuua/Ko-Deplot')
IMAGE_PATH = "LOCAL_PATH_TO_IMAGE"
image = Image.open(IMAGE_PATH)
inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt")
predictions = model.generate(**inputs, max_new_tokens=512)
print(processor.decode(predictions[0], skip_special_tokens=True))
```
# **Training Details**
## Training Data
Synthetic chart data from three libraries were used:
- [GenPlot](https://github.com/brendanartley/genplot)
- [Chart.js](https://github.com/chartjs/Chart.js)
- [Plotly](https://github.com/plotly/plotly.py)
## Training Procedure
The model was first exposed to a short warmup stage, following its [original paper](https://arxiv.org/pdf/2210.03347.pdf). It was then trained using the chart data for 50,000 steps.
# **Technical Specifications**
## Hardware
Ko-Deplot was trained by using A100 80G.
# **Contact**
Any questions and suggestions, please use the discussion tab. If you want to contact us directly, email [email protected].