whisper-omg-2 / README.md
nurzhanit's picture
End of training
643a5d6 verified
metadata
language:
  - hi
base_model: nurzhanit/whisper-enhanced-ml
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Hi - Sanchit Gandhi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: default
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0

Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of nurzhanit/whisper-enhanced-ml on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0003
  • Wer: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 25
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0508 0.8772 50 0.0217 2.9785
0.0112 1.7544 100 0.0104 1.9943
0.0064 2.6316 150 0.0048 1.1396
0.0027 3.5088 200 0.0026 1.3986
0.0018 4.3860 250 0.0011 0.3108
0.0006 5.2632 300 0.0006 0.0259
0.0003 6.1404 350 0.0004 0.0
0.0004 7.0175 400 0.0003 0.0
0.0004 7.8947 450 0.0003 0.0
0.0003 8.7719 500 0.0003 0.0

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.19.1