NuNER_Zero-span / README.md
Serega6678's picture
Update README.md
612fc9b
|
raw
history blame
3.1 kB
metadata
license: mit
datasets:
  - numind/NuNER
library_name: gliner
language:
  - en
pipeline_tag: token-classification
tags:
  - entity recognition
  - NER
  - named entity recognition
  - zero shot
  - zero-shot

NuNerZero - is the family of Zero-Shot Entity Recognition models inspired by GLiNER and built with insights we gathered throughout our work on NuNER.

NuNerZero span is:

  • a more powerful version of GLiNER-large-v2.1, surpassing it by +4.5% on average
  • is trained on the diverse dataset tailored for real-life use cases - NuNER v2.0 dataset

Installation & Usage

!pip install gliner

NuZero requires labels to be lower-cased

from gliner import GLiNER

model = GLiNER.from_pretrained("numind/NuNerZero_span")

# NuZero requires labels to be lower-cased!
labels = ["organization", "initiative", "project"]
labels = [l.lower() for l in labels]

text = "At the annual technology summit, the keynote address was delivered by a senior member of the Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory, which recently launched an expansive initiative titled 'Quantum Computing and Algorithmic Innovations: Shaping the Future of Technology'. This initiative explores the implications of quantum mechanics on next-generation computing and algorithm design and is part of a broader effort that includes the 'Global Computational Science Advancement Project'. The latter focuses on enhancing computational methodologies across scientific disciplines, aiming to set new benchmarks in computational efficiency and accuracy."

entities = model.predict_entities(text, labels)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory => organization
Quantum Computing and Algorithmic Innovations: Shaping the Future of Technology => initiative
Global Computational Science Advancement Project => project

Fine-tuning

A fine-tuning script can be found here.

Citation

This work

@misc{bogdanov2024nuner,
      title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data}, 
      author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard},
      year={2024},
      eprint={2402.15343},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Previous work

@misc{zaratiana2023gliner,
      title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, 
      author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
      year={2023},
      eprint={2311.08526},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}