File size: 6,009 Bytes
6c2687a
bd7932e
 
 
 
 
 
 
 
6c2687a
 
8e98071
6c2687a
bd7932e
6c2687a
bd7932e
6c2687a
bd7932e
6c2687a
bd7932e
6c2687a
bd7932e
6c2687a
bd7932e
6c2687a
bd7932e
6c2687a
bd7932e
6c2687a
bd7932e
 
 
6c2687a
bd7932e
6c2687a
bd7932e
 
 
6c2687a
bd7932e
6c2687a
bd7932e
6c2687a
bd7932e
 
1913d17
bd7932e
6c2687a
bd7932e
 
 
 
 
 
 
 
 
6c2687a
bd7932e
 
6c2687a
bd7932e
6c2687a
1913d17
bd7932e
 
 
6c2687a
bd7932e
 
 
 
 
 
 
 
 
 
 
6c2687a
bd7932e
 
 
 
 
 
 
 
 
 
 
 
6c2687a
bd7932e
 
6c2687a
bd7932e
6c2687a
bd7932e
6c2687a
bd7932e
 
6c2687a
bd7932e
 
6c2687a
bd7932e
 
 
 
6c2687a
bd7932e
 
6c2687a
bd7932e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: mit
language:
- multilingual
tags:
- nlp
base_model: HuggingFaceTB/SmolLM2-1.7B
pipeline_tag: text-generation
inference: true
---

# NuExtract-1.5-smol by NuMind 🔥

NuExtract-1.5-smol is a fine-tuning of Hugging Face's [SmolLM2-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B), intended for structured information extraction. It uses the same training data as [NuExtract-1.5](https://huggingface.co/numind/NuExtract-1.5) and supports multiple languages, while being less than half the size (1.7B vs 3.8B).

To use the model, provide an input text and a JSON template describing the information you need to extract.

Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text.

Check out the [blog post](https://numind.ai/blog/nuextract-1-5---multilingual-infinite-context-still-small-and-better-than-gpt-4o).

Try the 3.8B model here: [Playground](https://huggingface.co/spaces/numind/NuExtract-v1.5)

We also provide a tiny (0.5B) version which is based on Qwen2.5-0.5B: [NuExtract-tiny-v1.5](https://huggingface.co/numind/NuExtract-tiny-v1.5)

## Benchmark

Zero-shot performance (English):

<p align="left">
<img src="english_bench.png" style="height: auto;">
</p>

Zero-shot performance (Multilingual):

<p align="left">
<img src="multilingual_bench.png" style="height: auto;">
</p>

## Usage

To use the model:

```python
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
    template = json.dumps(json.loads(template), indent=4)
    prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts]
    
    outputs = []
    with torch.no_grad():
        for i in range(0, len(prompts), batch_size):
            batch_prompts = prompts[i:i+batch_size]
            batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device)

            pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens)
            outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True)

    return [output.split("<|output|>")[1] for output in outputs]

model_name = "numind/NuExtract-1.5-smol"
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: <https://github.com/mistralai/mistral-src>
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>"""

template = """{
    "Model": {
        "Name": "",
        "Number of parameters": "",
        "Number of max token": "",
        "Architecture": []
    },
    "Usage": {
        "Use case": [],
        "Licence": ""
    }
}"""

prediction = predict_NuExtract(model, tokenizer, [text], template)[0]
print(prediction)

```

Sliding window prompting:

```python
import json

MAX_INPUT_SIZE = 20_000
MAX_NEW_TOKENS = 6000

def clean_json_text(text):
    text = text.strip()
    text = text.replace("\#", "#").replace("\&", "&")
    return text

def predict_chunk(text, template, current, model, tokenizer):
    current = clean_json_text(current)

    input_llm =  f"<|input|>\n### Template:\n{template}\n### Current:\n{current}\n### Text:\n{text}\n\n<|output|>" + "{"
    input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda")
    output = tokenizer.decode(model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True)

    return clean_json_text(output.split("<|output|>")[1])

def split_document(document, window_size, overlap):
    tokens = tokenizer.tokenize(document)
    print(f"\tLength of document: {len(tokens)} tokens")

    chunks = []
    if len(tokens) > window_size:
        for i in range(0, len(tokens), window_size-overlap):
            print(f"\t{i} to {i + len(tokens[i:i + window_size])}")
            chunk = tokenizer.convert_tokens_to_string(tokens[i:i + window_size])
            chunks.append(chunk)

            if i + len(tokens[i:i + window_size]) >= len(tokens):
                break
    else:
        chunks.append(document)
    print(f"\tSplit into {len(chunks)} chunks")

    return chunks

def handle_broken_output(pred, prev):
    try:
        if all([(v in ["", []]) for v in json.loads(pred).values()]):
            # if empty json, return previous
            pred = prev
    except:
        # if broken json, return previous
        pred = prev

    return pred

def sliding_window_prediction(text, template, model, tokenizer, window_size=4000, overlap=128):
    # split text into chunks of n tokens
    tokens = tokenizer.tokenize(text)
    chunks = split_document(text, window_size, overlap)

    # iterate over text chunks
    prev = template
    for i, chunk in enumerate(chunks):
        print(f"Processing chunk {i}...")
        pred = predict_chunk(chunk, template, prev, model, tokenizer)

        # handle broken output
        pred = handle_broken_output(pred, prev)
            
        # iterate
        prev = pred

    return pred
```