liamcripwell
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -43,6 +43,7 @@ To use the model:
|
|
43 |
|
44 |
```python
|
45 |
import json
|
|
|
46 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
47 |
|
48 |
def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
|
@@ -60,7 +61,7 @@ def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_lengt
|
|
60 |
|
61 |
return [output.split("<|output|>")[1] for output in outputs]
|
62 |
|
63 |
-
model_name = "numind/NuExtract-
|
64 |
device = "cuda"
|
65 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
|
66 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
43 |
|
44 |
```python
|
45 |
import json
|
46 |
+
import torch
|
47 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
48 |
|
49 |
def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
|
|
|
61 |
|
62 |
return [output.split("<|output|>")[1] for output in outputs]
|
63 |
|
64 |
+
model_name = "numind/NuExtract-1.5-smol"
|
65 |
device = "cuda"
|
66 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
|
67 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|