Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

whisper-large-v3-sandi-train-dev-1

This model is a fine-tuned version of openai/whisper-large-v3 on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0265
  • Wer: 80.7774
  • Cer: 205.4415
  • Decode Runtime: 296.9575
  • Wer Runtime: 0.2339
  • Cer Runtime: 0.5476

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 1024
  • optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 28

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Runtime Wer Runtime Cer Runtime
1.9021 1.0357 7 1.3669 70.9647 206.0000 293.2787 0.2383 0.5705
1.248 2.0714 14 1.1785 90.1350 223.9722 301.9501 0.2377 0.5710
1.0696 3.1071 21 1.0601 84.5443 211.8357 295.8525 0.2329 0.5515
1.0339 4.1429 28 1.0265 80.7774 205.4415 296.9575 0.2339 0.5476

Framework versions

  • PEFT 0.15.1
  • Transformers 4.50.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
22
Safetensors
Model size
1.54B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ntnu-smil/whisper-large-v3-sandi-train-dev-1

Adapter
(92)
this model

Dataset used to train ntnu-smil/whisper-large-v3-sandi-train-dev-1

Evaluation results