finetuned_ClinicalLongformer_newData_undersampling

This model is a fine-tuned version of yikuan8/Clinical-Longformer on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5173
  • F1: 0.7647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1
0.6886 1.0 12 0.7002 0.56
0.6558 2.0 24 0.6807 0.6087
0.6087 3.0 36 0.5738 0.7568
0.5527 4.0 48 0.5173 0.7647
0.3949 5.0 60 0.5088 0.6897
0.3269 6.0 72 0.5050 0.7222
0.3196 7.0 84 0.5267 0.6897
0.2235 8.0 96 0.5024 0.7333
0.1633 9.0 108 0.4877 0.7143
0.136 10.0 120 0.5723 0.6667
0.1101 11.0 132 0.6704 0.6429
0.0673 12.0 144 0.7958 0.6897
0.0795 13.0 156 0.8270 0.6154
0.0716 14.0 168 0.8288 0.5926
0.0297 15.0 180 0.9462 0.6154
0.0236 16.0 192 1.0562 0.56
0.2009 17.0 204 1.0884 0.6429
0.0298 18.0 216 1.1095 0.6429
0.0134 19.0 228 1.1237 0.5926
0.0147 20.0 240 1.1291 0.5926

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for npark95/finetuned_ClinicalLongformer_newData_undersampling

Finetuned
(6)
this model