finetuned_ClinicalLongformer

This model is a fine-tuned version of yikuan8/Clinical-Longformer on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4698
  • F1: 0.8598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1
0.6611 1.0 21 0.5689 0.8067
0.5268 2.0 42 0.4698 0.8598
0.4322 3.0 63 0.5205 0.8485
0.3564 4.0 84 0.6989 0.7356
0.322 5.0 105 0.6610 0.7872
0.1975 6.0 126 1.0724 0.6824
0.2025 7.0 147 0.8713 0.8283
0.1605 8.0 168 0.9925 0.84
0.0834 9.0 189 1.2466 0.8235
0.0851 10.0 210 1.4596 0.8269
0.0742 11.0 231 1.4772 0.8269
0.0261 12.0 252 1.4519 0.8431
0.1153 13.0 273 1.4875 0.84
0.0016 14.0 294 1.4731 0.84
0.0036 15.0 315 1.5420 0.8431
0.0012 16.0 336 1.5392 0.8367
0.0092 17.0 357 1.4960 0.8515
0.0012 18.0 378 1.5128 0.8515
0.0007 19.0 399 1.5327 0.8515
0.0012 20.0 420 1.5213 0.8515

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for npark95/finetuned_ClinicalLongformer

Finetuned
(6)
this model