wav2vec2-xls-r-300m-ar
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON_VOICE - AR dataset. It achieves the following results on the evaluation set:
- eval_loss: 3.0191
- eval_wer: 1.0
- eval_runtime: 252.2389
- eval_samples_per_second: 30.217
- eval_steps_per_second: 0.476
- epoch: 1.0
- step: 340
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 5
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Evaluation Commands
Please use the evaluation script eval.py
included in the repo.
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train nouamanetazi/wav2vec2-xls-r-300m-ar
Evaluation results
- Test WER on Robust Speech Event - Dev Dataself-reported1.000
- Test CER on Robust Speech Event - Dev Dataself-reported1.000