|
|
|
|
|
|
|
|
|
|
|
"""Attention layers.""" |
|
import math |
|
import warnings |
|
from typing import Optional |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from packaging import version |
|
from torch import nn |
|
from torch.linalg import vector_norm |
|
from llmfoundry.models.layers.norm import LPLayerNorm |
|
from torch.nn import functional as F |
|
|
|
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, |
|
original_is_causal: bool): |
|
|
|
|
|
if original_is_causal and num_query_tokens != num_key_tokens: |
|
if num_query_tokens != 1: |
|
raise NotImplementedError( |
|
'MPT does not support query and key with different number of tokens, unless number of query tokens is 1.' |
|
) |
|
else: |
|
return False |
|
return original_is_causal |
|
|
|
|
|
def scaled_multihead_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
n_heads, |
|
past_key_value=None, |
|
long_range_past_key_value=None, |
|
softmax_scale=None, |
|
attn_bias=None, |
|
attn_bias_ae=None, |
|
key_padding_mask=None, |
|
is_causal=False, |
|
dropout_p=0.0, |
|
training=False, |
|
needs_weights=False, |
|
multiquery=False, |
|
topk=None, |
|
faiss_indexes=None, |
|
n_layers=None, |
|
current_layer=None, |
|
mask_by_sim=False, |
|
sim_threshold=0.0 |
|
): |
|
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) |
|
kv_n_heads = 1 if multiquery else n_heads |
|
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads) |
|
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads) |
|
|
|
had_kv=False |
|
if past_key_value is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(past_key_value) != 0: |
|
k = torch.cat([past_key_value[0], k], dim=3) |
|
v = torch.cat([past_key_value[1], v], dim=2) |
|
had_kv=True |
|
|
|
past_key_value = (k, v) |
|
|
|
b, h, s_q, d = q.shape |
|
s_k = k.size(-1) |
|
|
|
if softmax_scale is None: |
|
softmax_scale = 1 / math.sqrt(d) |
|
|
|
attn_weight = q.matmul(k) * softmax_scale |
|
|
|
if attn_bias is not None: |
|
|
|
_s_q = max(0, attn_bias.size(2) - s_q) |
|
_s_k = max(0, attn_bias.size(3) - s_k) |
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:] |
|
|
|
if (attn_bias.size(-1) != 1 and |
|
attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and |
|
attn_bias.size(-2) != s_q): |
|
raise RuntimeError( |
|
f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.' |
|
) |
|
attn_weight = attn_weight + attn_bias |
|
|
|
if needs_weights: |
|
reshaped_idx = None |
|
if long_range_past_key_value is not None or faiss_indexes is not None: |
|
if long_range_past_key_value is not None: |
|
|
|
k_cache, v_cache = long_range_past_key_value |
|
s_cache = k_cache.size(-1) |
|
|
|
k_cache = k_cache.to(k.device) |
|
v_cache = v_cache.to(k.device) |
|
|
|
q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True) |
|
k_n = k_cache/vector_norm(k_cache, ord=2, dim=-2, keepdim=True) |
|
|
|
sim = q_n.matmul(k_n) |
|
if s_cache<topk: |
|
topk = s_cache |
|
val, idx = torch.topk(sim, k=topk, dim=-1) |
|
|
|
reshaped_idx = idx.reshape(b, h, s_q * topk) |
|
|
|
selected_k = k_cache.gather(dim=-1, index=reshaped_idx.unsqueeze(-2).expand(-1, -1, d, -1)) |
|
selected_v = v_cache.gather(dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d)) |
|
|
|
sim_mask = rearrange(~ (val > sim_threshold).bool(), 'b h s i -> b h (s i)').unsqueeze(-2).expand(-1, -1, s_q, -1) |
|
min_val = torch.finfo(selected_k.dtype).min |
|
|
|
elif faiss_indexes is not None: |
|
|
|
kn_index, kv_index = faiss_indexes |
|
q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True) |
|
|
|
one_hot_encodings = F.one_hot(torch.arange(0, n_heads*n_layers, device=q.device))*10 |
|
q_n = torch.concat([rearrange(q_n, 'b h s d -> b (h s) d', h=n_heads), one_hot_encodings[n_heads*current_layer:n_heads*(current_layer+1)].unsqueeze(0).repeat_interleave(repeats=q.size(-2), dim=-2)], dim=-1).squeeze() |
|
|
|
D, I = kn_index.search(q_n.to('cpu').numpy(), k=topk) |
|
|
|
selected_k=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,:d], '(h s) d -> 1 h d s', h=32).to(q.device) |
|
selected_v=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,d:], '(h s) d -> 1 h s d', h=32).to(q.device) |
|
|
|
s_k_ae = selected_k.size(-1) |
|
s_k += s_k_ae |
|
attn_weight_cache = q.matmul(selected_k) * softmax_scale |
|
if mask_by_sim: |
|
attn_weight_cache = attn_weight_cache.masked_fill(sim_mask, min_val) |
|
|
|
if attn_bias_ae is not None: |
|
_s_q = max(0, attn_bias_ae.size(2) - s_q) |
|
_s_k = max(0, attn_bias_ae.size(3) - s_k_ae) |
|
attn_bias_ae = attn_bias_ae[:, :, _s_q:, _s_k:] |
|
|
|
if (attn_bias_ae.size(-1) != 1 and |
|
attn_bias_ae.size(-1) != s_k_ae) or (attn_bias_ae.size(-2) != 1 and |
|
attn_bias_ae.size(-2) != s_q): |
|
raise RuntimeError( |
|
f'attn_bias (shape: {attn_bias_ae.shape}) is expected to broadcast to shape: {attn_weight_cache.shape}.' |
|
) |
|
attn_weight_cache = attn_weight_cache + attn_bias_ae |
|
|
|
attn_weight = torch.cat([attn_weight_cache, attn_weight], dim=-1) |
|
v = torch.cat([selected_v, v], dim=-2) |
|
|
|
min_val = torch.finfo(q.dtype).min |
|
|
|
if key_padding_mask is not None: |
|
if attn_bias is not None: |
|
warnings.warn( |
|
'Propogating key_padding_mask to the attention module ' +\ |
|
'and applying it within the attention module can cause ' +\ |
|
'unneccessary computation/memory usage. Consider integrating ' +\ |
|
'into attn_bias once and passing that to each attention ' +\ |
|
'module instead.' |
|
) |
|
attn_weight = attn_weight.masked_fill( |
|
~key_padding_mask.view((b, 1, 1, s_k)), min_val) |
|
|
|
def _create_active_externalism_mask(k, s_q, device): |
|
mask = torch.zeros(s_q, s_q * k, device=device, dtype=torch.bool) |
|
for i in range(s_q): |
|
mask[i, i * k : (i + 1) * k] = 1 |
|
return ~mask |
|
|
|
if is_causal and (not q.size(2) == 1): |
|
s = max(s_q, s_k) |
|
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16) |
|
causal_mask = causal_mask.tril() |
|
causal_mask = causal_mask.to(torch.bool) |
|
causal_mask = ~causal_mask |
|
causal_mask = causal_mask[-s_q:, -s_k:] |
|
|
|
if long_range_past_key_value is not None: |
|
mask = _create_active_externalism_mask(k=topk,s_q=s_q, device=attn_weight.device) |
|
s=s_q |
|
if had_kv: |
|
s += (past_key_value[0][0].size(-1) -s_q) |
|
causal_mask = torch.cat([mask, causal_mask[:,-s:]], dim=1) |
|
|
|
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), |
|
min_val) |
|
|
|
attn_weight = torch.softmax(attn_weight, dim=-1) |
|
|
|
if dropout_p: |
|
attn_weight = torch.nn.functional.dropout(attn_weight, |
|
p=dropout_p, |
|
training=training, |
|
inplace=True) |
|
|
|
out = attn_weight.to(v.dtype).matmul(v) |
|
out = rearrange(out, 'b h s d -> b s (h d)') |
|
|
|
if needs_weights: |
|
return out, attn_weight, past_key_value, reshaped_idx |
|
return out, None, past_key_value, None |
|
|
|
|
|
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]): |
|
for tensor in tensors: |
|
if tensor.dtype not in valid_dtypes: |
|
raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.') |
|
if not tensor.is_cuda: |
|
raise TypeError(f'Inputs must be cuda tensors ({tensor.is_cuda=}).') |
|
|
|
|
|
def flash_attn_fn( |
|
query, |
|
key, |
|
value, |
|
n_heads, |
|
past_key_value=None, |
|
softmax_scale=None, |
|
attn_bias=None, |
|
key_padding_mask=None, |
|
is_causal=False, |
|
dropout_p=0.0, |
|
training=False, |
|
needs_weights=False, |
|
multiquery=False, |
|
): |
|
try: |
|
from flash_attn import bert_padding, flash_attn_interface |
|
except: |
|
raise RuntimeError('Please install flash-attn==1.0.3.post0') |
|
|
|
check_valid_inputs(query, key, value) |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
|
|
past_key_value = (key, value) |
|
|
|
if attn_bias is not None: |
|
|
|
_s_q = max(0, attn_bias.size(2) - query.size(1)) |
|
_s_k = max(0, attn_bias.size(3) - key.size(1)) |
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:] |
|
|
|
if attn_bias is not None: |
|
raise NotImplementedError(f'attn_bias not implemented for flash attn.') |
|
|
|
batch_size, seqlen = query.shape[:2] |
|
|
|
if key_padding_mask is None: |
|
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) |
|
query_padding_mask = key_padding_mask[:, -query.size(1):] |
|
|
|
query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input( |
|
query, query_padding_mask) |
|
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) |
|
|
|
key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input( |
|
key, key_padding_mask) |
|
key_unpad = rearrange(key_unpad, |
|
'nnz (h d) -> nnz h d', |
|
h=1 if multiquery else n_heads) |
|
|
|
value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask) |
|
value_unpad = rearrange(value_unpad, |
|
'nnz (h d) -> nnz h d', |
|
h=1 if multiquery else n_heads) |
|
|
|
if multiquery: |
|
|
|
|
|
|
|
|
|
|
|
|
|
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, |
|
key_unpad.size(-1)) |
|
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, |
|
value_unpad.size(-1)) |
|
|
|
dropout_p = dropout_p if training else 0.0 |
|
|
|
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) |
|
|
|
output_unpad = flash_attn_interface.flash_attn_unpadded_func( |
|
query_unpad, |
|
key_unpad, |
|
value_unpad, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
dropout_p, |
|
softmax_scale=softmax_scale, |
|
causal=reset_is_causal, |
|
return_attn_probs=needs_weights) |
|
|
|
output = bert_padding.pad_input( |
|
rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, |
|
seqlen) |
|
return output, None, past_key_value |
|
|
|
|
|
def triton_flash_attn_fn( |
|
query, |
|
key, |
|
value, |
|
n_heads, |
|
past_key_value=None, |
|
softmax_scale=None, |
|
attn_bias=None, |
|
key_padding_mask=None, |
|
is_causal=False, |
|
dropout_p=0.0, |
|
training=False, |
|
needs_weights=False, |
|
multiquery=False, |
|
): |
|
try: |
|
from llmfoundry.models.layers.flash_attn_triton import flash_attn_func |
|
except: |
|
_installed = False |
|
if version.parse(torch.__version__) < version.parse('2.0.0'): |
|
_installed = True |
|
|
|
|
|
try: |
|
from flash_attn.flash_attn_triton import flash_attn_func |
|
except: |
|
_installed = False |
|
if not _installed: |
|
|
|
|
|
raise RuntimeError( |
|
'Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' |
|
'and `pip install .[gpu]` if installing from llm-foundry source or ' |
|
'`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' |
|
'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' |
|
'Note: (1) requires you have CMake and PyTorch already installed.' |
|
) |
|
|
|
check_valid_inputs(query, key, value) |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
|
|
past_key_value = (key, value) |
|
|
|
if attn_bias is not None: |
|
|
|
_s_q = max(0, attn_bias.size(2) - query.size(1)) |
|
_s_k = max(0, attn_bias.size(3) - key.size(1)) |
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:] |
|
|
|
if dropout_p: |
|
raise NotImplementedError( |
|
f'Dropout not implemented for attn_impl: triton.') |
|
|
|
if needs_weights: |
|
raise NotImplementedError( |
|
f'attn_impl: triton cannot return attn weights.') |
|
|
|
if key_padding_mask is not None: |
|
warnings.warn( |
|
'Propagating key_padding_mask to the attention module ' +\ |
|
'and applying it within the attention module can cause ' +\ |
|
'unnecessary computation/memory usage. Consider integrating ' +\ |
|
'into attn_bias once and passing that to each attention ' +\ |
|
'module instead.' |
|
) |
|
b_size, s_k = key_padding_mask.shape[:2] |
|
|
|
if attn_bias is None: |
|
attn_bias = query.new_zeros(b_size, 1, 1, s_k) |
|
|
|
attn_bias = attn_bias.masked_fill( |
|
~key_padding_mask.view((b_size, 1, 1, s_k)), |
|
torch.finfo(query.dtype).min) |
|
|
|
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads) |
|
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) |
|
value = rearrange(value, |
|
'b s (h d) -> b s h d', |
|
h=1 if multiquery else n_heads) |
|
|
|
if multiquery: |
|
|
|
|
|
|
|
|
|
|
|
|
|
key = key.expand(*key.shape[:2], n_heads, key.size(-1)) |
|
value = value.expand(*value.shape[:2], n_heads, value.size(-1)) |
|
|
|
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) |
|
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, |
|
softmax_scale) |
|
|
|
output = attn_output.view(*attn_output.shape[:2], -1) |
|
|
|
return output, None, past_key_value |
|
|
|
|
|
class MultiheadAttention(nn.Module): |
|
"""Multi-head self attention. |
|
|
|
Using torch or triton attention implemetation enables user to also use |
|
additive bias. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
d_model: int, |
|
n_heads: int, |
|
attn_impl: str = 'triton', |
|
clip_qkv: Optional[float] = None, |
|
qk_ln: bool = False, |
|
softmax_scale: Optional[float] = None, |
|
attn_pdrop: float = 0.0, |
|
low_precision_layernorm: bool = False, |
|
verbose: int = 0, |
|
device: Optional[str] = None, |
|
): |
|
super().__init__() |
|
|
|
self.attn_impl = attn_impl |
|
self.clip_qkv = clip_qkv |
|
self.qk_ln = qk_ln |
|
|
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.softmax_scale = softmax_scale |
|
if self.softmax_scale is None: |
|
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) |
|
self.attn_dropout_p = attn_pdrop |
|
|
|
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device) |
|
|
|
fuse_splits = (d_model, 2 * d_model) |
|
self.Wqkv._fused = (0, fuse_splits) |
|
|
|
if self.qk_ln: |
|
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm |
|
self.q_ln = layernorm_class(self.d_model, device=device) |
|
self.k_ln = layernorm_class(self.d_model, device=device) |
|
|
|
if self.attn_impl == 'flash': |
|
self.attn_fn = flash_attn_fn |
|
elif self.attn_impl == 'triton': |
|
self.attn_fn = triton_flash_attn_fn |
|
if verbose: |
|
warnings.warn( |
|
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\ |
|
'it uses more memory. When training larger models this can trigger ' +\ |
|
'alloc retries which hurts performance. If encountered, we recommend ' +\ |
|
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.' |
|
) |
|
elif self.attn_impl == 'torch': |
|
self.attn_fn = scaled_multihead_dot_product_attention |
|
if torch.cuda.is_available() and verbose: |
|
warnings.warn( |
|
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\ |
|
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\ |
|
'we recommend using `attn_impl: triton`.' |
|
) |
|
else: |
|
raise ValueError(f'{attn_impl=} is an invalid setting.') |
|
|
|
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) |
|
self.out_proj._is_residual = True |
|
|
|
def forward( |
|
self, |
|
x, |
|
past_key_value=None, |
|
long_range_past_key_value=None, |
|
attn_bias=None, |
|
attn_bias_ae=None, |
|
attention_mask=None, |
|
is_causal=True, |
|
needs_weights=False, |
|
topk=None, |
|
faiss_indexes=None, |
|
n_layers=None, |
|
current_layer=None, |
|
mask_by_sim=None, |
|
sim_threshold=None |
|
): |
|
qkv = self.Wqkv(x) |
|
|
|
if self.clip_qkv: |
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) |
|
|
|
query, key, value = qkv.chunk(3, dim=2) |
|
|
|
key_padding_mask = attention_mask |
|
|
|
if self.qk_ln: |
|
|
|
dtype = query.dtype |
|
query = self.q_ln(query).to(dtype) |
|
key = self.k_ln(key).to(dtype) |
|
|
|
context, attn_weights, past_key_value, reshaped_idx = self.attn_fn( |
|
query, |
|
key, |
|
value, |
|
self.n_heads, |
|
past_key_value=past_key_value, |
|
long_range_past_key_value=long_range_past_key_value, |
|
softmax_scale=self.softmax_scale, |
|
attn_bias=attn_bias, |
|
attn_bias_ae=attn_bias_ae, |
|
key_padding_mask=key_padding_mask, |
|
is_causal=is_causal, |
|
dropout_p=self.attn_dropout_p, |
|
training=self.training, |
|
needs_weights=needs_weights, |
|
topk=topk, |
|
faiss_indexes=faiss_indexes, |
|
n_layers=n_layers, |
|
current_layer=current_layer, |
|
mask_by_sim=mask_by_sim, |
|
sim_threshold=sim_threshold |
|
) |
|
|
|
return self.out_proj(context), attn_weights, past_key_value, reshaped_idx |
|
|
|
|
|
class MultiQueryAttention(nn.Module): |
|
"""Multi-Query self attention. |
|
|
|
Using torch or triton attention implemetation enables user to also use |
|
additive bias. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
d_model: int, |
|
n_heads: int, |
|
attn_impl: str = 'triton', |
|
clip_qkv: Optional[float] = None, |
|
qk_ln: bool = False, |
|
softmax_scale: Optional[float] = None, |
|
attn_pdrop: float = 0.0, |
|
low_precision_layernorm: bool = False, |
|
verbose: int = 0, |
|
device: Optional[str] = None, |
|
): |
|
super().__init__() |
|
|
|
self.attn_impl = attn_impl |
|
self.clip_qkv = clip_qkv |
|
self.qk_ln = qk_ln |
|
|
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.head_dim = d_model // n_heads |
|
self.softmax_scale = softmax_scale |
|
if self.softmax_scale is None: |
|
self.softmax_scale = 1 / math.sqrt(self.head_dim) |
|
self.attn_dropout_p = attn_pdrop |
|
|
|
|
|
|
|
|
|
|
|
self.Wqkv = nn.Linear( |
|
d_model, |
|
d_model + 2 * self.head_dim, |
|
device=device, |
|
) |
|
|
|
fuse_splits = (d_model, d_model + self.head_dim) |
|
self.Wqkv._fused = (0, fuse_splits) |
|
|
|
if self.qk_ln: |
|
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm |
|
self.q_ln = layernorm_class(d_model, device=device) |
|
self.k_ln = layernorm_class(self.head_dim, device=device) |
|
|
|
if self.attn_impl == 'flash': |
|
self.attn_fn = flash_attn_fn |
|
elif self.attn_impl == 'triton': |
|
self.attn_fn = triton_flash_attn_fn |
|
if verbose: |
|
warnings.warn( |
|
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\ |
|
'it uses more memory. When training larger models this can trigger ' +\ |
|
'alloc retries which hurts performance. If encountered, we recommend ' +\ |
|
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.' |
|
) |
|
elif self.attn_impl == 'torch': |
|
self.attn_fn = scaled_multihead_dot_product_attention |
|
if torch.cuda.is_available() and verbose: |
|
warnings.warn( |
|
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\ |
|
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\ |
|
'we recommend using `attn_impl: triton`.' |
|
) |
|
else: |
|
raise ValueError(f'{attn_impl=} is an invalid setting.') |
|
|
|
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) |
|
self.out_proj._is_residual = True |
|
|
|
def forward( |
|
self, |
|
x, |
|
past_key_value=None, |
|
attn_bias=None, |
|
attention_mask=None, |
|
is_causal=True, |
|
needs_weights=False, |
|
): |
|
qkv = self.Wqkv(x) |
|
|
|
if self.clip_qkv: |
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) |
|
|
|
query, key, value = qkv.split( |
|
[self.d_model, self.head_dim, self.head_dim], dim=2) |
|
|
|
key_padding_mask = attention_mask |
|
|
|
if self.qk_ln: |
|
|
|
dtype = query.dtype |
|
query = self.q_ln(query).to(dtype) |
|
key = self.k_ln(key).to(dtype) |
|
|
|
context, attn_weights, past_key_value = self.attn_fn( |
|
query, |
|
key, |
|
value, |
|
self.n_heads, |
|
past_key_value=past_key_value, |
|
softmax_scale=self.softmax_scale, |
|
attn_bias=attn_bias, |
|
key_padding_mask=key_padding_mask, |
|
is_causal=is_causal, |
|
dropout_p=self.attn_dropout_p, |
|
training=self.training, |
|
needs_weights=needs_weights, |
|
multiquery=True, |
|
) |
|
|
|
return self.out_proj(context), attn_weights, past_key_value |
|
|
|
|
|
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, |
|
use_sequence_id): |
|
if attn_impl == 'flash': |
|
return None |
|
elif attn_impl in ['torch', 'triton']: |
|
if alibi: |
|
if (prefix_lm or not causal) or use_sequence_id: |
|
return (1, n_heads, seq_len, seq_len) |
|
return (1, n_heads, 1, seq_len) |
|
elif prefix_lm or use_sequence_id: |
|
return (1, 1, seq_len, seq_len) |
|
return None |
|
else: |
|
raise ValueError(f'{attn_impl=} is an invalid setting.') |
|
|
|
|
|
def build_attn_bias( |
|
attn_impl, |
|
n_heads, |
|
seq_len, |
|
attn_bias=None, |
|
causal=False, |
|
alibi=False, |
|
alibi_bias_max=8, |
|
for_ae=False, |
|
topk=0, |
|
device=None, |
|
dtype=None |
|
): |
|
if attn_impl == 'flash': |
|
return None |
|
elif attn_impl in ['torch', 'triton']: |
|
if alibi: |
|
|
|
if attn_bias is not None: |
|
attn_bias = attn_bias.add( |
|
build_alibi_bias( |
|
n_heads, |
|
seq_len, |
|
full=not causal, |
|
alibi_bias_max=alibi_bias_max, |
|
device=device, |
|
dtype=dtype, |
|
for_ae=for_ae, |
|
topk=topk |
|
)) |
|
else: |
|
attn_bias = build_alibi_bias( |
|
n_heads, |
|
seq_len, |
|
full=not causal, |
|
alibi_bias_max=alibi_bias_max, |
|
for_ae=for_ae, |
|
topk=topk) |
|
return attn_bias |
|
|
|
|
|
def gen_slopes(n_heads, alibi_bias_max=8, device=None): |
|
_n_heads = 2**math.ceil(math.log2(n_heads)) |
|
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) |
|
m = m.mul(alibi_bias_max / _n_heads) |
|
slopes = (1. / torch.pow(2, m)) |
|
|
|
if _n_heads != n_heads: |
|
|
|
|
|
|
|
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] |
|
|
|
return slopes.view(1, n_heads, 1, 1) |
|
|
|
|
|
def build_alibi_bias( |
|
n_heads, |
|
seq_len, |
|
full=False, |
|
alibi_bias_max=8, |
|
device=None, |
|
dtype=None, |
|
for_ae=False, |
|
topk=0 |
|
): |
|
if not for_ae: |
|
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, |
|
device=device).view(1, 1, 1, seq_len) |
|
else: |
|
alibi_bias = torch.tensor(-seq_len, dtype=torch.int32, |
|
device=device).repeat(seq_len*topk).view(1, 1, 1, seq_len*(topk)) |
|
if full: |
|
|
|
|
|
alibi_bias = alibi_bias - torch.arange( |
|
1 - seq_len, 1, dtype=torch.int32, device=device).view( |
|
1, 1, seq_len, 1) |
|
alibi_bias = alibi_bias.abs().mul(-1) |
|
|
|
slopes = gen_slopes(n_heads, alibi_bias_max, device=device) |
|
alibi_bias = alibi_bias * slopes |
|
return alibi_bias.to(dtype=dtype) |
|
|
|
|
|
ATTN_CLASS_REGISTRY = { |
|
'multihead_attention': MultiheadAttention, |
|
'multiquery_attention': MultiQueryAttention, |
|
} |
|
|