File size: 28,328 Bytes
c2d160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d93abf8
c2d160f
 
d93abf8
c2d160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d93abf8
c2d160f
 
 
 
 
 
d93abf8
c2d160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d93abf8
c2d160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
# Adapted from https://github.com/mosaicml/llm-foundry
# Classes changed: MultiheadAttention
# Functions changed: scaled_multihead_dot_product_attention, build_alibi_bias, build_attn_bias
# SPDX-License-Identifier: Apache-2.0

"""Attention layers."""
import math
import warnings
from typing import Optional
import torch
import torch.nn as nn
from einops import rearrange
from packaging import version
from torch import nn
from torch.linalg import vector_norm
from llmfoundry.models.layers.norm import LPLayerNorm
from torch.nn import functional as F

def _reset_is_causal(num_query_tokens: int, num_key_tokens: int,
                     original_is_causal: bool):
    # disable causal when it is not needed
    # necessary for flash & triton for generation with kv_cache
    if original_is_causal and num_query_tokens != num_key_tokens:
        if num_query_tokens != 1:
            raise NotImplementedError(
                'MPT does not support query and key with different number of tokens, unless number of query tokens is 1.'
            )
        else:
            return False
    return original_is_causal


def scaled_multihead_dot_product_attention(
    query,
    key,
    value,
    n_heads,
    past_key_value=None,
    long_range_past_key_value=None,
    softmax_scale=None,
    attn_bias=None,
    attn_bias_ae=None,
    key_padding_mask=None,
    is_causal=False,
    dropout_p=0.0,
    training=False,
    needs_weights=False,
    multiquery=False,
    topk=None,
    faiss_indexes=None,
    n_layers=None,
    current_layer=None,
    mask_by_sim=False,
    sim_threshold=0.0
):
    q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
    kv_n_heads = 1 if multiquery else n_heads
    k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
    v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)

    had_kv=False
    if past_key_value is not None:
        # attn_impl: flash & triton use kernels which expect input shape [b, s, h, d_head].
        # kv_cache is therefore stored using that shape.
        # attn_impl: torch stores the kv_cache in the ordering which is most advantageous
        # for its attn computation ie
        # keys are stored as tensors with shape [b, h, d_head, s] and
        # values are stored as tensors with shape [b, h, s, d_head]
        if len(past_key_value) != 0:
            k = torch.cat([past_key_value[0], k], dim=3)
            v = torch.cat([past_key_value[1], v], dim=2)
            had_kv=True

        past_key_value = (k, v)

    b, h, s_q, d = q.shape
    s_k = k.size(-1)

    if softmax_scale is None:
        softmax_scale = 1 / math.sqrt(d)

    attn_weight = q.matmul(k) * softmax_scale

    if attn_bias is not None:
        # clamp to 0 necessary for torch 2.0 compile()
        _s_q = max(0, attn_bias.size(2) - s_q)
        _s_k = max(0, attn_bias.size(3) - s_k)
        attn_bias = attn_bias[:, :, _s_q:, _s_k:]

        if (attn_bias.size(-1) != 1 and
                attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and
                                               attn_bias.size(-2) != s_q):
            raise RuntimeError(
                f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.'
            )
        attn_weight = attn_weight + attn_bias

    if needs_weights: #will return memory indices w/attention weights
        reshaped_idx = None
    if long_range_past_key_value is not None or faiss_indexes is not None:
        if long_range_past_key_value is not None: #manual memories

            k_cache, v_cache = long_range_past_key_value
            s_cache = k_cache.size(-1)

            k_cache = k_cache.to(k.device)
            v_cache = v_cache.to(k.device)

            q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True)
            k_n = k_cache/vector_norm(k_cache, ord=2, dim=-2, keepdim=True)
           
            sim = q_n.matmul(k_n)
            if s_cache<topk:
                topk = s_cache #number of tokens in cache < topk
            val, idx = torch.topk(sim, k=topk, dim=-1)

            reshaped_idx = idx.reshape(b, h, s_q * topk)

            selected_k = k_cache.gather(dim=-1, index=reshaped_idx.unsqueeze(-2).expand(-1, -1, d, -1))
            selected_v = v_cache.gather(dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d))

            sim_mask = rearrange(~ (val > sim_threshold).bool(), 'b h s i -> b h (s i)').unsqueeze(-2).expand(-1, -1, s_q, -1)
            min_val = torch.finfo(selected_k.dtype).min

        elif faiss_indexes is not None: #faiss indexes
  
            kn_index, kv_index = faiss_indexes
            q_n = q/vector_norm(q, ord=2, dim=-1, keepdim=True)

            one_hot_encodings = F.one_hot(torch.arange(0, n_heads*n_layers, device=q.device))*10
            q_n = torch.concat([rearrange(q_n, 'b h s d -> b (h s) d', h=n_heads), one_hot_encodings[n_heads*current_layer:n_heads*(current_layer+1)].unsqueeze(0).repeat_interleave(repeats=q.size(-2), dim=-2)], dim=-1).squeeze()

            D, I = kn_index.search(q_n.to('cpu').numpy(), k=topk)

            selected_k=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,:d], '(h s) d -> 1 h d s', h=32).to(q.device)
            selected_v=rearrange(torch.tensor(kv_index.reconstruct_batch(I.flatten()))[:,d:], '(h s) d -> 1 h s d', h=32).to(q.device)
        
        s_k_ae = selected_k.size(-1)
        s_k += s_k_ae
        attn_weight_cache = q.matmul(selected_k) * softmax_scale
        if mask_by_sim:
            attn_weight_cache = attn_weight_cache.masked_fill(sim_mask, min_val)

        if attn_bias_ae is not None: #add alibi bias to memories
            _s_q = max(0, attn_bias_ae.size(2) - s_q)
            _s_k = max(0, attn_bias_ae.size(3) - s_k_ae)
            attn_bias_ae = attn_bias_ae[:, :, _s_q:, _s_k:]

            if (attn_bias_ae.size(-1) != 1 and
                    attn_bias_ae.size(-1) != s_k_ae) or (attn_bias_ae.size(-2) != 1 and
                                                attn_bias_ae.size(-2) != s_q):
                raise RuntimeError(
                    f'attn_bias (shape: {attn_bias_ae.shape}) is expected to broadcast to shape: {attn_weight_cache.shape}.'
                )
            attn_weight_cache = attn_weight_cache + attn_bias_ae
        
        attn_weight = torch.cat([attn_weight_cache, attn_weight], dim=-1)
        v = torch.cat([selected_v, v], dim=-2)

    min_val = torch.finfo(q.dtype).min

    if key_padding_mask is not None:
        if attn_bias is not None:
            warnings.warn(
                'Propogating key_padding_mask to the attention module ' +\
                'and applying it within the attention module can cause ' +\
                'unneccessary computation/memory usage. Consider integrating ' +\
                'into attn_bias once and passing that to each attention ' +\
                'module instead.'
            )
        attn_weight = attn_weight.masked_fill(
            ~key_padding_mask.view((b, 1, 1, s_k)), min_val)
        
    def _create_active_externalism_mask(k, s_q, device):
        mask = torch.zeros(s_q, s_q * k, device=device, dtype=torch.bool)
        for i in range(s_q):
            mask[i, i * k : (i + 1) * k] = 1
        return ~mask

    if is_causal and (not q.size(2) == 1):
        s = max(s_q, s_k)
        causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
        causal_mask = causal_mask.tril()
        causal_mask = causal_mask.to(torch.bool)
        causal_mask = ~causal_mask
        causal_mask = causal_mask[-s_q:, -s_k:]
        
        if long_range_past_key_value is not None:
            mask = _create_active_externalism_mask(k=topk,s_q=s_q, device=attn_weight.device)
            s=s_q
            if had_kv:
                s += (past_key_value[0][0].size(-1) -s_q)
            causal_mask = torch.cat([mask, causal_mask[:,-s:]], dim=1)
        
        attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k),
                                              min_val)

    attn_weight = torch.softmax(attn_weight, dim=-1)

    if dropout_p:
        attn_weight = torch.nn.functional.dropout(attn_weight,
                                                  p=dropout_p,
                                                  training=training,
                                                  inplace=True)

    out = attn_weight.to(v.dtype).matmul(v)
    out = rearrange(out, 'b h s d -> b s (h d)')

    if needs_weights:
        return out, attn_weight, past_key_value, reshaped_idx
    return out, None, past_key_value, None


def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
    for tensor in tensors:
        if tensor.dtype not in valid_dtypes:
            raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.')
        if not tensor.is_cuda:
            raise TypeError(f'Inputs must be cuda tensors ({tensor.is_cuda=}).')


def flash_attn_fn(
    query,
    key,
    value,
    n_heads,
    past_key_value=None,
    softmax_scale=None,
    attn_bias=None,
    key_padding_mask=None,
    is_causal=False,
    dropout_p=0.0,
    training=False,
    needs_weights=False,
    multiquery=False,
):
    try:
        from flash_attn import bert_padding, flash_attn_interface  # type: ignore # yapf: disable # isort: skip
    except:
        raise RuntimeError('Please install flash-attn==1.0.3.post0')

    check_valid_inputs(query, key, value)

    if past_key_value is not None:
        if len(past_key_value) != 0:
            key = torch.cat([past_key_value[0], key], dim=1)
            value = torch.cat([past_key_value[1], value], dim=1)

        past_key_value = (key, value)

    if attn_bias is not None:
        # clamp to 0 necessary for torch 2.0 compile()
        _s_q = max(0, attn_bias.size(2) - query.size(1))
        _s_k = max(0, attn_bias.size(3) - key.size(1))
        attn_bias = attn_bias[:, :, _s_q:, _s_k:]

    if attn_bias is not None:
        raise NotImplementedError(f'attn_bias not implemented for flash attn.')

    batch_size, seqlen = query.shape[:2]

    if key_padding_mask is None:
        key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
    query_padding_mask = key_padding_mask[:, -query.size(1):]

    query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input(
        query, query_padding_mask)
    query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)

    key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input(
        key, key_padding_mask)
    key_unpad = rearrange(key_unpad,
                          'nnz (h d) -> nnz h d',
                          h=1 if multiquery else n_heads)

    value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask)
    value_unpad = rearrange(value_unpad,
                            'nnz (h d) -> nnz h d',
                            h=1 if multiquery else n_heads)

    if multiquery:
        # Expanding a tensor does not allocate new memory, but only creates a new
        # view on the existing tensor where a dimension of size one is expanded
        # to a larger size by setting the stride to 0.
        # - pytorch docs
        #
        # hopefully the kernels can utilize this and we're jot just wasting BW here
        key_unpad = key_unpad.expand(key_unpad.size(0), n_heads,
                                     key_unpad.size(-1))
        value_unpad = value_unpad.expand(value_unpad.size(0), n_heads,
                                         value_unpad.size(-1))

    dropout_p = dropout_p if training else 0.0

    reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)

    output_unpad = flash_attn_interface.flash_attn_unpadded_func(
        query_unpad,
        key_unpad,
        value_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale=softmax_scale,
        causal=reset_is_causal,
        return_attn_probs=needs_weights)

    output = bert_padding.pad_input(
        rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size,
        seqlen)
    return output, None, past_key_value


def triton_flash_attn_fn(
    query,
    key,
    value,
    n_heads,
    past_key_value=None,
    softmax_scale=None,
    attn_bias=None,
    key_padding_mask=None,
    is_causal=False,
    dropout_p=0.0,
    training=False,
    needs_weights=False,
    multiquery=False,
):
    try:
        from llmfoundry.models.layers.flash_attn_triton import flash_attn_func
    except:
        _installed = False
        if version.parse(torch.__version__) < version.parse('2.0.0'):
            _installed = True
            # if torch1.13.1 revert to using triton flash attn from HazyResearch
            # with flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202
            try:
                from flash_attn.flash_attn_triton import flash_attn_func
            except:
                _installed = False
        if not _installed:
            # installing triton-pre-mlir works for both torch1.13.1 and torch2.0+
            # default recommendation is to install this variant
            raise RuntimeError(
                'Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU '
                'and `pip install .[gpu]` if installing from llm-foundry source or '
                '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` '
                'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). '
                'Note: (1) requires you have CMake and PyTorch already installed.'
            )

    check_valid_inputs(query, key, value)

    if past_key_value is not None:
        if len(past_key_value) != 0:
            key = torch.cat([past_key_value[0], key], dim=1)
            value = torch.cat([past_key_value[1], value], dim=1)

        past_key_value = (key, value)

    if attn_bias is not None:
        # clamp to 0 necessary for torch 2.0 compile()
        _s_q = max(0, attn_bias.size(2) - query.size(1))
        _s_k = max(0, attn_bias.size(3) - key.size(1))
        attn_bias = attn_bias[:, :, _s_q:, _s_k:]

    if dropout_p:
        raise NotImplementedError(
            f'Dropout not implemented for attn_impl: triton.')

    if needs_weights:
        raise NotImplementedError(
            f'attn_impl: triton cannot return attn weights.')

    if key_padding_mask is not None:
        warnings.warn(
            'Propagating key_padding_mask to the attention module ' +\
            'and applying it within the attention module can cause ' +\
            'unnecessary computation/memory usage. Consider integrating ' +\
            'into attn_bias once and passing that to each attention ' +\
            'module instead.'
        )
        b_size, s_k = key_padding_mask.shape[:2]

        if attn_bias is None:
            attn_bias = query.new_zeros(b_size, 1, 1, s_k)

        attn_bias = attn_bias.masked_fill(
            ~key_padding_mask.view((b_size, 1, 1, s_k)),
            torch.finfo(query.dtype).min)

    query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
    key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
    value = rearrange(value,
                      'b s (h d) -> b s h d',
                      h=1 if multiquery else n_heads)

    if multiquery:
        # Expanding a tensor does not allocate new memory, but only creates a new
        # view on the existing tensor where a dimension of size one is expanded
        # to a larger size by setting the stride to 0.
        # - pytorch docs
        #
        # hopefully the kernels can utilize this and we're jot just wasting BW here
        key = key.expand(*key.shape[:2], n_heads, key.size(-1))
        value = value.expand(*value.shape[:2], n_heads, value.size(-1))

    reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
    attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal,
                                  softmax_scale)

    output = attn_output.view(*attn_output.shape[:2], -1)

    return output, None, past_key_value


class MultiheadAttention(nn.Module):
    """Multi-head self attention.

    Using torch or triton attention implemetation enables user to also use
    additive bias.
    """

    def __init__(
        self,
        d_model: int,
        n_heads: int,
        attn_impl: str = 'triton',
        clip_qkv: Optional[float] = None,
        qk_ln: bool = False,
        softmax_scale: Optional[float] = None,
        attn_pdrop: float = 0.0,
        low_precision_layernorm: bool = False,
        verbose: int = 0,
        device: Optional[str] = None,
    ):
        super().__init__()

        self.attn_impl = attn_impl
        self.clip_qkv = clip_qkv
        self.qk_ln = qk_ln

        self.d_model = d_model
        self.n_heads = n_heads
        self.softmax_scale = softmax_scale
        if self.softmax_scale is None:
            self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
        self.attn_dropout_p = attn_pdrop

        self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
        # for param init fn; enables shape based init of fused layers
        fuse_splits = (d_model, 2 * d_model)
        self.Wqkv._fused = (0, fuse_splits)  # type: ignore

        if self.qk_ln:
            layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
            self.q_ln = layernorm_class(self.d_model, device=device)
            self.k_ln = layernorm_class(self.d_model, device=device)

        if self.attn_impl == 'flash':
            self.attn_fn = flash_attn_fn
        elif self.attn_impl == 'triton':
            self.attn_fn = triton_flash_attn_fn
            if verbose:
                warnings.warn(
                    'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\
                    'it uses more memory. When training larger models this can trigger '  +\
                    'alloc retries which hurts performance. If encountered, we recommend ' +\
                    'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.'
                )
        elif self.attn_impl == 'torch':
            self.attn_fn = scaled_multihead_dot_product_attention
            if torch.cuda.is_available() and verbose:
                warnings.warn(
                    'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\
                    '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\
                    'we recommend using `attn_impl: triton`.'
                )
        else:
            raise ValueError(f'{attn_impl=} is an invalid setting.')

        self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
        self.out_proj._is_residual = True  # type: ignore

    def forward(
        self,
        x,
        past_key_value=None,
        long_range_past_key_value=None,
        attn_bias=None,
        attn_bias_ae=None,
        attention_mask=None,
        is_causal=True,
        needs_weights=False,
        topk=None,
        faiss_indexes=None,
        n_layers=None,
        current_layer=None,
        mask_by_sim=None,
        sim_threshold=None
    ):
        qkv = self.Wqkv(x)

        if self.clip_qkv:
            qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)

        query, key, value = qkv.chunk(3, dim=2)

        key_padding_mask = attention_mask

        if self.qk_ln:
            # Applying layernorm to qk
            dtype = query.dtype
            query = self.q_ln(query).to(dtype)
            key = self.k_ln(key).to(dtype)

        context, attn_weights, past_key_value, reshaped_idx = self.attn_fn(
            query,
            key,
            value,
            self.n_heads,
            past_key_value=past_key_value,
            long_range_past_key_value=long_range_past_key_value,
            softmax_scale=self.softmax_scale,
            attn_bias=attn_bias,
            attn_bias_ae=attn_bias_ae,
            key_padding_mask=key_padding_mask,
            is_causal=is_causal,
            dropout_p=self.attn_dropout_p,
            training=self.training,
            needs_weights=needs_weights,
            topk=topk,
            faiss_indexes=faiss_indexes,
            n_layers=n_layers,
            current_layer=current_layer,
            mask_by_sim=mask_by_sim,
            sim_threshold=sim_threshold
        )

        return self.out_proj(context), attn_weights, past_key_value, reshaped_idx


class MultiQueryAttention(nn.Module):
    """Multi-Query self attention.

    Using torch or triton attention implemetation enables user to also use
    additive bias.
    """

    def __init__(
        self,
        d_model: int,
        n_heads: int,
        attn_impl: str = 'triton',
        clip_qkv: Optional[float] = None,
        qk_ln: bool = False,
        softmax_scale: Optional[float] = None,
        attn_pdrop: float = 0.0,
        low_precision_layernorm: bool = False,
        verbose: int = 0,
        device: Optional[str] = None,
    ):
        super().__init__()

        self.attn_impl = attn_impl
        self.clip_qkv = clip_qkv
        self.qk_ln = qk_ln

        self.d_model = d_model
        self.n_heads = n_heads
        self.head_dim = d_model // n_heads
        self.softmax_scale = softmax_scale
        if self.softmax_scale is None:
            self.softmax_scale = 1 / math.sqrt(self.head_dim)
        self.attn_dropout_p = attn_pdrop

        # NOTE: if we ever want to make attn TensorParallel, I'm pretty sure we'll
        # want to split Wqkv into Wq and Wkv where Wq can be TensorParallel but
        # Wkv shouldn't be TensorParallel
        # - vchiley
        self.Wqkv = nn.Linear(
            d_model,
            d_model + 2 * self.head_dim,
            device=device,
        )
        # for param init fn; enables shape based init of fused layers
        fuse_splits = (d_model, d_model + self.head_dim)
        self.Wqkv._fused = (0, fuse_splits)  # type: ignore

        if self.qk_ln:
            layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
            self.q_ln = layernorm_class(d_model, device=device)
            self.k_ln = layernorm_class(self.head_dim, device=device)

        if self.attn_impl == 'flash':
            self.attn_fn = flash_attn_fn
        elif self.attn_impl == 'triton':
            self.attn_fn = triton_flash_attn_fn
            if verbose:
                warnings.warn(
                    'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\
                    'it uses more memory. When training larger models this can trigger '  +\
                    'alloc retries which hurts performance. If encountered, we recommend ' +\
                    'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.'
                )
        elif self.attn_impl == 'torch':
            self.attn_fn = scaled_multihead_dot_product_attention
            if torch.cuda.is_available() and verbose:
                warnings.warn(
                    'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\
                    '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\
                    'we recommend using `attn_impl: triton`.'
                )
        else:
            raise ValueError(f'{attn_impl=} is an invalid setting.')

        self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
        self.out_proj._is_residual = True  # type: ignore

    def forward(
        self,
        x,
        past_key_value=None,
        attn_bias=None,
        attention_mask=None,
        is_causal=True,
        needs_weights=False,
    ):
        qkv = self.Wqkv(x)

        if self.clip_qkv:
            qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)

        query, key, value = qkv.split(
            [self.d_model, self.head_dim, self.head_dim], dim=2)

        key_padding_mask = attention_mask

        if self.qk_ln:
            # Applying layernorm to qk
            dtype = query.dtype
            query = self.q_ln(query).to(dtype)
            key = self.k_ln(key).to(dtype)

        context, attn_weights, past_key_value = self.attn_fn(
            query,
            key,
            value,
            self.n_heads,
            past_key_value=past_key_value,
            softmax_scale=self.softmax_scale,
            attn_bias=attn_bias,
            key_padding_mask=key_padding_mask,
            is_causal=is_causal,
            dropout_p=self.attn_dropout_p,
            training=self.training,
            needs_weights=needs_weights,
            multiquery=True,
        )

        return self.out_proj(context), attn_weights, past_key_value


def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal,
                    use_sequence_id):
    if attn_impl == 'flash':
        return None
    elif attn_impl in ['torch', 'triton']:
        if alibi:
            if (prefix_lm or not causal) or use_sequence_id:
                return (1, n_heads, seq_len, seq_len)
            return (1, n_heads, 1, seq_len)
        elif prefix_lm or use_sequence_id:
            return (1, 1, seq_len, seq_len)
        return None
    else:
        raise ValueError(f'{attn_impl=} is an invalid setting.')


def build_attn_bias(
    attn_impl,
    n_heads,
    seq_len,
    attn_bias=None,
    causal=False,
    alibi=False,
    alibi_bias_max=8,
    for_ae=False,
    topk=0,
    device=None,
    dtype=None
):
    if attn_impl == 'flash':
        return None
    elif attn_impl in ['torch', 'triton']:
        if alibi:
            # in place add alibi to attn bias
            if attn_bias is not None:
                attn_bias = attn_bias.add(
                    build_alibi_bias(
                        n_heads,
                        seq_len,
                        full=not causal,
                        alibi_bias_max=alibi_bias_max,
                        device=device,
                        dtype=dtype,
                        for_ae=for_ae,
                        topk=topk
                    ))
            else: #for memories
                attn_bias = build_alibi_bias(
                        n_heads,
                        seq_len,
                        full=not causal,
                        alibi_bias_max=alibi_bias_max,
                        for_ae=for_ae,
                        topk=topk)
        return attn_bias


def gen_slopes(n_heads, alibi_bias_max=8, device=None):
    _n_heads = 2**math.ceil(math.log2(n_heads))
    m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
    m = m.mul(alibi_bias_max / _n_heads)
    slopes = (1. / torch.pow(2, m))

    if _n_heads != n_heads:
        # if n_heads is not a power of two,
        # Huggingface and FasterTransformer calculate slopes normally,
        # then return this strided concatenation of slopes
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]

    return slopes.view(1, n_heads, 1, 1)


def build_alibi_bias(
    n_heads,
    seq_len,
    full=False,
    alibi_bias_max=8,
    device=None,
    dtype=None,
    for_ae=False,
    topk=0
):
    if not for_ae:
        alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32,
                              device=device).view(1, 1, 1, seq_len)
    else:
        alibi_bias = torch.tensor(-seq_len, dtype=torch.int32,
                            device=device).repeat(seq_len*topk).view(1, 1, 1, seq_len*(topk))
    if full:
        # generate 1 x Heads x SeqLen x SeqLen alibi bias mask
        # otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size)
        alibi_bias = alibi_bias - torch.arange(
            1 - seq_len, 1, dtype=torch.int32, device=device).view(
                1, 1, seq_len, 1)
        alibi_bias = alibi_bias.abs().mul(-1)

    slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
    alibi_bias = alibi_bias * slopes
    return alibi_bias.to(dtype=dtype)


ATTN_CLASS_REGISTRY = {
    'multihead_attention': MultiheadAttention,
    'multiquery_attention': MultiQueryAttention,
}