Usage:

from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
from PIL import Image

processor = BlipProcessor.from_pretrained("prasanna2003/blip-image-captioning")
if processor.tokenizer.eos_token is None:
    processor.tokenizer.eos_token = '<|eos|>'
model = BlipForConditionalGeneration.from_pretrained("prasanna2003/blip-image-captioning")

image = Image.open('file_name.jpg').convert('RGB')

prompt = """Instruction: Generate a single line caption of the Image.
output: """

inputs = processor(image, prompt, return_tensors="pt")

output = model.generate(**inputs, max_length=100)
print(processor.tokenizer.decode(output[0]))
Downloads last month
18
Safetensors
Model size
247M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train nnpy/blip-image-captioning

Space using nnpy/blip-image-captioning 1