|
--- |
|
tags: |
|
- w4a16 |
|
- int4 |
|
- vllm |
|
- audio |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md |
|
language: |
|
- en |
|
base_model: openai/whisper-large-v3 |
|
library_name: transformers |
|
--- |
|
|
|
# whisper-large-v3-quantized.w4a16 |
|
|
|
## Model Overview |
|
- **Model Architecture:** whisper-large-v3 |
|
- **Input:** Audio-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT4 |
|
- **Activation quantization:** FP16 |
|
- **Release Date:** 1/31/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) to INT4 data type, ready for inference with vLLM >= 0.5.2. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm.assets.audio import AudioAsset |
|
from vllm import LLM, SamplingParams |
|
|
|
# prepare model |
|
llm = LLM( |
|
model="neuralmagic/whisper-large-v3.w4a16", |
|
max_model_len=448, |
|
max_num_seqs=400, |
|
limit_mm_per_prompt={"audio": 1}, |
|
) |
|
|
|
# prepare inputs |
|
inputs = { # Test explicit encoder/decoder prompt |
|
"encoder_prompt": { |
|
"prompt": "", |
|
"multi_modal_data": { |
|
"audio": AudioAsset("winning_call").audio_and_sample_rate, |
|
}, |
|
}, |
|
"decoder_prompt": "<|startoftranscript|>", |
|
} |
|
|
|
# generate response |
|
print("========== SAMPLE GENERATION ==============") |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64)) |
|
print(f"PROMPT : {outputs[0].prompt}") |
|
print(f"RESPONSE: {outputs[0].outputs[0].text}") |
|
print("==========================================") |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import WhisperProcessor |
|
|
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.transformers import oneshot |
|
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration |
|
|
|
# Select model and load it. |
|
MODEL_ID = "openai/whisper-large-v3" |
|
|
|
model = TraceableWhisperForConditionalGeneration.from_pretrained( |
|
MODEL_ID, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
) |
|
model.config.forced_decoder_ids = None |
|
processor = WhisperProcessor.from_pretrained(MODEL_ID) |
|
|
|
# Configure processor the dataset task. |
|
processor.tokenizer.set_prefix_tokens(language="en", task="transcribe") |
|
|
|
# Select calibration dataset. |
|
DATASET_ID = "MLCommons/peoples_speech" |
|
DATASET_SUBSET = "test" |
|
DATASET_SPLIT = "test" |
|
|
|
# Select number of samples. 512 samples is a good place to start. |
|
# Increasing the number of samples can improve accuracy. |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
# Load dataset and preprocess. |
|
ds = load_dataset( |
|
DATASET_ID, |
|
DATASET_SUBSET, |
|
split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]", |
|
trust_remote_code=True, |
|
) |
|
|
|
|
|
def preprocess(example): |
|
return { |
|
"array": example["audio"]["array"], |
|
"sampling_rate": example["audio"]["sampling_rate"], |
|
"text": " " + example["text"].capitalize(), |
|
} |
|
|
|
|
|
ds = ds.map(preprocess, remove_columns=ds.column_names) |
|
|
|
|
|
# Process inputs. |
|
def process(sample): |
|
inputs = processor( |
|
audio=sample["array"], |
|
sampling_rate=sample["sampling_rate"], |
|
text=sample["text"], |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
|
|
inputs["input_features"] = inputs["input_features"].to(dtype=model.dtype) |
|
inputs["decoder_input_ids"] = inputs["labels"] |
|
del inputs["labels"] |
|
|
|
return inputs |
|
|
|
|
|
ds = ds.map(process, remove_columns=ds.column_names) |
|
|
|
|
|
# Define a oneshot data collator for multimodal inputs. |
|
def data_collator(batch): |
|
assert len(batch) == 1 |
|
return {key: torch.tensor(value) for key, value in batch[0].items()} |
|
|
|
|
|
# Recipe |
|
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"]) |
|
|
|
# Apply algorithms. |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
data_collator=data_collator, |
|
) |
|
|
|
# Confirm generations of the quantized model look sane. |
|
print("\n\n") |
|
print("========== SAMPLE GENERATION ==============") |
|
sample_features = next(iter(ds))["input_features"] |
|
sample_decoder_ids = [processor.tokenizer.prefix_tokens] |
|
sample_input = { |
|
"input_features": torch.tensor(sample_features).to(model.device), |
|
"decoder_input_ids": torch.tensor(sample_decoder_ids).to(model.device), |
|
} |
|
|
|
output = model.generate(**sample_input, language="en") |
|
print(processor.batch_decode(output, skip_special_tokens=True)) |
|
print("==========================================\n\n") |
|
# that's where you have a lot of windows in the south no actually that's passive solar |
|
# and passive solar is something that was developed and designed in the 1960s and 70s |
|
# and it was a great thing for what it was at the time but it's not a passive house |
|
|
|
# Save to disk compressed. |
|
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128" |
|
model.save_pretrained(SAVE_DIR, save_compressed=True) |
|
processor.save_pretrained(SAVE_DIR) |
|
``` |
|
|
|
|
|
## Evaluation |
|
Base Model |
|
``` |
|
Total Test Time: 94.4606 seconds |
|
Total Requests: 511 |
|
Successful Requests: 511 |
|
Average Latency: 53.3529 seconds |
|
Median Latency: 52.7258 seconds |
|
95th Percentile Latency: 86.5851 seconds |
|
Estimated req_Throughput: 5.41 requests/s |
|
Estimated Throughput: 100.79 tok/s |
|
WER: 12.660815197787665 |
|
``` |
|
|
|
W4A16 |
|
``` |
|
Total Test Time: 106.2064 seconds |
|
Total Requests: 511 |
|
Successful Requests: 511 |
|
Average Latency: 59.7467 seconds |
|
Median Latency: 58.3930 seconds |
|
95th Percentile Latency: 97.4831 seconds |
|
Estimated req_Throughput: 4.81 requests/s |
|
Estimated Throughput: 89.35 tok/s |
|
WER: 12.949380786341228 |
|
``` |
|
|
|
### BibTeX entry and citation info |
|
```bibtex |
|
@misc{radford2022whisper, |
|
doi = {10.48550/ARXIV.2212.04356}, |
|
url = {https://arxiv.org/abs/2212.04356}, |
|
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, |
|
title = {Robust Speech Recognition via Large-Scale Weak Supervision}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {arXiv.org perpetual, non-exclusive license} |
|
} |