|
--- |
|
base_model: aubmindlab/aragpt2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: res_nw_eg_aragpt2-base |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# res_nw_eg_aragpt2-base |
|
|
|
This model is a fine-tuned version of [aubmindlab/aragpt2-base](https://huggingface.co/aubmindlab/aragpt2-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1032 |
|
- Bleu: 0.1405 |
|
- Rouge1: 0.4455 |
|
- Rouge2: 0.2251 |
|
- Rougel: 0.4383 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:| |
|
| 0.2542 | 1.0 | 7105 | 0.1199 | 0.0729 | 0.3187 | 0.1103 | 0.3094 | |
|
| 0.1078 | 2.0 | 14210 | 0.1119 | 0.1044 | 0.3803 | 0.1636 | 0.3720 | |
|
| 0.0972 | 3.0 | 21315 | 0.1077 | 0.1222 | 0.4109 | 0.1933 | 0.4033 | |
|
| 0.0902 | 4.0 | 28420 | 0.1051 | 0.1312 | 0.4294 | 0.2090 | 0.4223 | |
|
| 0.0846 | 5.0 | 35525 | 0.1032 | 0.1405 | 0.4455 | 0.2251 | 0.4383 | |
|
| 0.0799 | 6.0 | 42630 | 0.1041 | 0.1454 | 0.4537 | 0.2338 | 0.4466 | |
|
| 0.0759 | 7.0 | 49735 | 0.1044 | 0.1494 | 0.4623 | 0.2425 | 0.4553 | |
|
| 0.0722 | 8.0 | 56840 | 0.1044 | 0.1527 | 0.4655 | 0.2470 | 0.4587 | |
|
| 0.069 | 9.0 | 63945 | 0.1058 | 0.1536 | 0.4689 | 0.2489 | 0.4621 | |
|
| 0.066 | 10.0 | 71050 | 0.1062 | 0.1550 | 0.4724 | 0.2523 | 0.4657 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|