|
--- |
|
license: other |
|
base_model: aubmindlab/aragpt2-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: res_nw_dj_aragpt2-large |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# res_nw_dj_aragpt2-large |
|
|
|
This model is a fine-tuned version of [aubmindlab/aragpt2-large](https://huggingface.co/aubmindlab/aragpt2-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0718 |
|
- Bleu: 0.1063 |
|
- Rouge1: 0.4552 |
|
- Rouge2: 0.2232 |
|
- Rougel: 0.4516 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:| |
|
| 0.1323 | 1.0 | 5358 | 0.0757 | 0.0830 | 0.4072 | 0.1825 | 0.4035 | |
|
| 0.0662 | 2.0 | 10716 | 0.0718 | 0.1063 | 0.4552 | 0.2232 | 0.4516 | |
|
| 0.0526 | 3.0 | 16074 | 0.0727 | 0.1197 | 0.4753 | 0.2520 | 0.4719 | |
|
| 0.0414 | 4.0 | 21432 | 0.0757 | 0.1274 | 0.4894 | 0.2644 | 0.4862 | |
|
| 0.0325 | 5.0 | 26790 | 0.0819 | 0.1290 | 0.4910 | 0.2671 | 0.4875 | |
|
| 0.0262 | 6.0 | 32148 | 0.0863 | 0.1297 | 0.4922 | 0.2665 | 0.4888 | |
|
| 0.0221 | 7.0 | 37506 | 0.0930 | 0.1326 | 0.4960 | 0.2713 | 0.4923 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|