Update README.md
Browse files
README.md
CHANGED
@@ -13,21 +13,30 @@ pipeline_tag: sentence-similarity
|
|
13 |
|
14 |
# KoE5
|
15 |
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
19 |
|
|
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
25 |
First install the Sentence Transformers library:
|
26 |
|
27 |
```bash
|
28 |
pip install -U sentence-transformers
|
29 |
```
|
30 |
-
|
31 |
Then you can load this model and run inference.
|
32 |
```python
|
33 |
from sentence_transformers import SentenceTransformer
|
@@ -53,6 +62,33 @@ print(similarities)
|
|
53 |
# [0.3897, 0.3740, 1.0000]])
|
54 |
```
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
## FAQ
|
57 |
|
58 |
**1. Do I need to add the prefix "query: " and "passage: " to input texts?**
|
@@ -69,7 +105,16 @@ Here are some rules of thumb:
|
|
69 |
## Citation
|
70 |
|
71 |
If you find our paper or models helpful, please consider cite as follows:
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
```
|
74 |
@article{wang2024multilingual,
|
75 |
title={Multilingual E5 Text Embeddings: A Technical Report},
|
|
|
13 |
|
14 |
# KoE5
|
15 |
|
16 |
+
Introducing KoE5, a model with advanced retrieval abilities.
|
17 |
+
It has shown remarkable performance in Korean text retrieval, speficially overwhelming most multilingual embedding models.
|
18 |
+
To our knowledge, It is one of the best publicly opened Korean retrieval models.
|
19 |
|
20 |
+
For details, visit the [KoE5 repository](https://github.com/nlpai-lab/KoE5)
|
21 |
|
22 |
+
### Model Description
|
23 |
|
24 |
+
This is the model card of a π€ transformers model that has been pushed on the Hub.
|
25 |
|
26 |
+
- **Developed by:** [NLP&AI Lab](http://nlp.korea.ac.kr/)
|
27 |
+
- **Language(s) (NLP):** Korean, English
|
28 |
+
- **License:** MIT
|
29 |
+
- **Finetuned from model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)
|
30 |
+
- **Finetuned dataset:** [ko-triplet-v1.0](nlpai-lab/ko-triplet-v1.0)
|
31 |
|
32 |
+
## Example code
|
33 |
+
### Install Dependencies
|
34 |
First install the Sentence Transformers library:
|
35 |
|
36 |
```bash
|
37 |
pip install -U sentence-transformers
|
38 |
```
|
39 |
+
### Python code
|
40 |
Then you can load this model and run inference.
|
41 |
```python
|
42 |
from sentence_transformers import SentenceTransformer
|
|
|
62 |
# [0.3897, 0.3740, 1.0000]])
|
63 |
```
|
64 |
|
65 |
+
## Training Details
|
66 |
+
|
67 |
+
### Training Data
|
68 |
+
|
69 |
+
- [ko-triplet-v1.0](nlpai-lab/ko-triplet-v1.0)
|
70 |
+
- Korean query-document-hard_negative data pair (open data)
|
71 |
+
- About 700000+ examples used totally
|
72 |
+
|
73 |
+
### Training Procedure
|
74 |
+
|
75 |
+
- **loss:** Used **[CachedMultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss)** by sentence-transformers
|
76 |
+
- **batch size:** 512
|
77 |
+
- **learning rate:** 1e-05
|
78 |
+
- **epochs:** 1
|
79 |
+
|
80 |
+
## Evaluation
|
81 |
+
### Metrics
|
82 |
+
- NDCG@1, F1@1, NDCG@3, F1@3
|
83 |
+
### Benchmark Datasets
|
84 |
+
- Ko-strategyQA
|
85 |
+
- AutoRAG-benchmark
|
86 |
+
- PublicHealthQA
|
87 |
+
|
88 |
+
## Results
|
89 |
+
|
90 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65a4c4ed2548c41ad9b1421c/8toWmSrqH-aLKq1rSiqnv.png)
|
91 |
+
|
92 |
## FAQ
|
93 |
|
94 |
**1. Do I need to add the prefix "query: " and "passage: " to input texts?**
|
|
|
105 |
## Citation
|
106 |
|
107 |
If you find our paper or models helpful, please consider cite as follows:
|
108 |
+
```text
|
109 |
+
@misc{KoE5,
|
110 |
+
author = {NLP & AI Lab and Human-Inspired AI research},
|
111 |
+
title = {KoE5: A New Dataset and Model for Improving Korean Embedding Performance},
|
112 |
+
year = {2024},
|
113 |
+
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
|
114 |
+
journal = {GitHub repository},
|
115 |
+
howpublished = {\url{https://github.com/nlpai-lab/KoE5}},
|
116 |
+
}
|
117 |
+
```
|
118 |
```
|
119 |
@article{wang2024multilingual,
|
120 |
title={Multilingual E5 Text Embeddings: A Technical Report},
|