shuttie's picture
initial commit
082bf7c
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# nixie-suggest-small-v1
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model is based on E5-small-v2 model, fine-tuned for typical suggester-like workloads:
* for a partial and noisy input of the query, it tries to minimize the cosine distance to the correct query
* 'mil' should be close to 'milk'
* model also prone to typical typos like letter drops/swaps/duplications. So 'mikl' is still close to 'milk'.
* the model is asymmetrical (as the original E5), so you need to prepend your prefixes with 'query: ' and full queries with 'passage: '
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["query: mil", "passage: milk"]
model = SentenceTransformer('nixiesearch/nixie-suggest-small-v1')
embeddings = model.encode(sentences)
print(embeddings)
```
## Training dataset
The training dataset was syntetically generated from the following corpora:
* top-100k most frequent English words, from Google N-Gram project: [https://github.com/hackerb9/gwordlist](https://github.com/hackerb9/gwordlist)
* top-1M 2-grams and 3-grams from [MultiLex](https://analytics.huma-num.fr/popr-ngram/Multi-LEX/index.html#en-section)
We did the following permutations to the original 1/2/3-grams:
* letter swaps: milk-mikl
* letter drops: milk-ilk
* qwerty-aware replacements: milk-nilk
* duplications: milk-miilk
The original generation code is available on github: https://github.com/nixiesearch/autocomplete-playground
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 220359 with parameters:
```
{'batch_size': 2048, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 3000,
"evaluator": "sentence_transformers.evaluation.RerankingEvaluator.RerankingEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 220358,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information -->