niting3c's picture
Update README.md
83ea996
|
raw
history blame
2.18 kB
metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
model-index:
  - name: llama-2-7b-hf-zero-shot-prompt
    results: []
license: mit
datasets:
  - niting3c/Malicious_packets_subset
  - niting3c/Malicious_packets
metrics:
  - type: accuracy
    value: 0.546
    name: Accuracy
  - type: recall
    value: 0.098
    name: recall
  - type: precision
    value: 0.9423076923076923,
    name: precision
  - type: f1
    value: 0.17753623188405795
    name: f1
pipeline_tag: text-classification

llama-2-7b-hf-zero-shot-prompt

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3135
  • {'accuracy': 0.546, 'recall': 0.098, 'precision': 0.9423076923076923, 'f1': 0.17753623188405795, 'total_time_in_seconds': 2308.70937472, 'samples_per_second': 0.4331424348815146, 'latency_in_seconds': 2.3087093747200003}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 100
  • total_train_batch_size: 200
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
No log 0.22 10 1.3991
No log 0.44 20 1.3609
No log 0.67 30 1.3327
1.4726 0.89 40 1.3135

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3