TINY Frankenstein of SmolLM-135M upped to 0.18b

Use this frankenbase for training. Sorry for the mislabelling, the model is a 0.18b 181m parameter, not 0.15. I did not except this repo to blow up and now all the training scripts depend on it.

🐧 If you're impppatient, get the trained checkpoint file that runs on 1 cpu core:

wget https://huggingface.co/nisten/Biggie-SmoLlm-0.15B-Base/resolve/main/biggie_groked_int8_q8_0.gguf

make sure to install latest llama.cpp first, it's easy on linux & mac:

git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make -j

Now for the magic trained finetune that runs at insane speeds:

The settings are very finicky so be careful with your experimentation

./llama-cli -fa -b 512 -ctv q8_0 -ctk q8_0 --min-p 0.3 --top-p 0.85 --keep -1 \
  -p "You are a NASA JPL Scientists. Human: I want to bring my cat to mars." \
  --in-prefix "<|im_start|>Human:" --reverse-prompt "Human:" \
  -m biggie_groked_int8_q8_0.gguf -co -cnv \
  -c 1024 -n 700 --temp 1.5 -ngl 0 -t 1

Yup, that's no gpu, 1 cpu core.

This base model was built one via semi-automated continuous merging to figure out the recipe. Model is more coherent.

The temperature settings and min p etc need to be adjusted but even at default temp0 it was coherent for first 100 tokens. Amazing option for further training. And this is a merge of the base, not the instruct!

🧠 What's Really Going Down Here?

We're talking about a convergence of whole bunch of stuff, more papers will be written about this:

  1. Evolutionary Merging:
  2. BitNet Integration:
  3. Experimental GrokAdamW Optimizer:

Prior work, from last week

Credits for optimizer go to @cognitivecompai for laying the groundwork with the original GrokAdamW optimizer.

LETS TRY OUT THE EXPERIMENTAL GROKKED FINETUNE:

wget https://huggingface.co/nisten/Biggie-SmoLlm-0.15B-Base/resolve/main/biggie_groked_int8_q8_0.gguf 

Yes we will be talking with a 164mb file that runs at 160 tokens per second on a single cpu core

you read all of that correctly yes, 1 cpu core 160 tps https://x.com/nisten/status/1819752034305970649

image/png

πŸš€ run it with NO GPU and only one CPU core it with these settings

./llama-cli -n -1 -fa -b 512 -ctv q8_0 -ctk q8_0 -fa --min-p 0.3 --top-p 0.85 --keep -1 -p "You are a NASA JPL Scientists. Human: I want to bring my cat to mars." -m biggie_groked_int8_q8_0.gguf -co -cnv --in-prefix "<|im_start|>Human:" --reverse-prompt "Human:" -c 1024 -n 512 --temp 1.5 -ngl 0

πŸ‹οΈ Training Tutorial, MAKE YOUR OWN BIGGIE_SMOlLM

Clone the repo like you're stealing code from the future:

git clone https://github.com/nisten/grokadamw
cd grokadamw

Fire up the training script and watch the magic happen:

python smoltrainer.py

πŸ’» Do it from scratch yourself

Install the secret sauce (dependencies):

pip install torch transformers datasets tqdm

make a file named meow.py , copy paste in this code, and then run it python meow.py

import torch
import torch.nn as nn
import logging
from datasets import load_dataset, Dataset
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
from torch.cuda.amp import autocast
import warnings
from tqdm import tqdm

warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

MODEL_NAME = "nisten/Biggie-SmoLlm-0.15B-Base"
MAX_LENGTH = 2048
BATCH_SIZE = 8
LEARNING_RATE = 2e-4
MAX_STEPS = 3000
GRADIENT_ACCUMULATION_STEPS = 2
NUM_WARMUP_STEPS = 30
OUTPUT_DIR = "./capybara_finetuned_results"

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

class GrokAdamW(torch.optim.Optimizer):
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2,
                 alpha_init=0.98, lamb=2.0, gamma=0.1, grokking_signal_fns=None,
                 grokking_signal_decay_rate=0.1, gradient_clipping=1.0):
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
                        alpha_init=alpha_init, lamb=lamb, gamma=gamma,
                        grokking_signal_fns=grokking_signal_fns,
                        grokking_signal_decay_rate=grokking_signal_decay_rate,
                        gradient_clipping=gradient_clipping)
        super(GrokAdamW, self).__init__(params, defaults)

    @torch.no_grad()
    def step(self, closure=None):
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            grokking_signal = self._compute_grokking_signal(group)
            for i, p in enumerate(group['params']):
                if p.grad is None:
                    continue
                grad = p.grad

                if group['gradient_clipping'] > 0:
                    grad = torch.clamp(grad, -group['gradient_clipping'], group['gradient_clipping'])

                state = self.state[p]

                if len(state) == 0:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    state['grok_ema'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                exp_avg, exp_avg_sq, grok_ema = state['exp_avg'], state['exp_avg_sq'], state['grok_ema']
                beta1, beta2 = group['betas']

                state['step'] += 1
                
                layer_beta1 = beta1 * (1 - group['gamma'])**i

                alpha = group['alpha_init'] * torch.exp(torch.tensor(-group['grokking_signal_decay_rate'] * grokking_signal))
                grok_ema.mul_(alpha).add_(grad, alpha=1 - alpha)
                grok_grad = grad + group['lamb'] * grok_ema

                exp_avg.mul_(layer_beta1).add_(grok_grad, alpha=1 - layer_beta1)
                exp_avg_sq.mul_(beta2).addcmul_(grok_grad, grok_grad, value=1 - beta2)

                denom = exp_avg_sq.sqrt().add_(group['eps'])
                step_size = group['lr']

                if group['weight_decay'] != 0:
                    p.data.mul_(1 - group['lr'] * group['weight_decay'])

                p.addcdiv_(exp_avg, denom, value=-step_size)

        return loss

    def _compute_grokking_signal(self, group):
        if group['grokking_signal_fns'] is None:
            return 0.0

        signals = []
        for fn in group['grokking_signal_fns']:
            try:
                signal = fn()
                if signal is not None:
                    signals.append(signal)
            except Exception as e:
                logger.warning(f"Error in grokking_signal_fn: {e}. Ignoring this function.")

        if not signals:
            return 0.0

        return sum(signals) / len(signals)

def format_capybara_prompts(examples):
    texts = []
    for conversation in examples['conversation']:
        formatted_text = ""
        for turn in conversation:
            if 'input' in turn:
                formatted_text += f"Human: {turn['input']}\n\n"
            if 'output' in turn:
                formatted_text += f"Assistant: {turn['output']}\n\n"
        texts.append(formatted_text.strip())
    return {"text": texts}

class CustomTrainer(Trainer):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.grokking_signal = 0.0

    def compute_loss(self, model, inputs, return_outputs=False):
        labels = inputs.pop("labels")
        outputs = model(**inputs)
        logits = outputs.logits
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        loss_fct = nn.CrossEntropyLoss()
        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
        return (loss, outputs) if return_outputs else loss

    def training_step(self, model, inputs):
        model.train()
        inputs = self._prepare_inputs(inputs)

        with autocast(dtype=torch.bfloat16):
            loss = self.compute_loss(model, inputs)

        if self.args.gradient_accumulation_steps > 1:
            loss = loss / self.args.gradient_accumulation_steps

        loss.backward()

        self.grokking_signal = loss.item()

        return loss.detach()

def grokking_signal_fn():
    return trainer.grokking_signal

def main():
    logger.info(f"πŸš€ Initializing {MODEL_NAME} finetuning with GrokAdamW")
    
    try:
        config = AutoConfig.from_pretrained(MODEL_NAME)
        tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
        model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
    except Exception as e:
        logger.error(f"❌ Failed to load model or tokenizer: {str(e)}")
        return

    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

    logger.info("πŸ“š Loading Capybara dataset")
    try:
        capybara_dataset = load_dataset("LDJnr/Capybara", split="train")
        capybara_dataset = capybara_dataset.map(format_capybara_prompts, batched=True, remove_columns=capybara_dataset.column_names)
    except Exception as e:
        logger.error(f"❌ Failed to load Capybara dataset: {str(e)}")
        return

    logger.info(f"πŸ“Š Capybara dataset size: {len(capybara_dataset)}")

    def tokenize_function(examples):
        return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=MAX_LENGTH)

    logger.info("πŸ”’ Tokenizing dataset")
    tokenized_dataset = capybara_dataset.map(tokenize_function, batched=True, remove_columns=capybara_dataset.column_names)

    logger.info("πŸ‹οΈ Setting up the training arguments")
    training_args = TrainingArguments(
        output_dir=OUTPUT_DIR,
        num_train_epochs=3,
        per_device_train_batch_size=BATCH_SIZE,
        gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
        learning_rate=LEARNING_RATE,
        weight_decay=0.01,
        bf16=True,
        logging_steps=10,
        save_steps=300,
        save_total_limit=10,
        dataloader_num_workers=4,
        warmup_steps=NUM_WARMUP_STEPS,
        gradient_checkpointing=True,
        evaluation_strategy="steps",
        eval_steps=300,
        max_steps=MAX_STEPS,
        fp16=False,
        optim="adamw_hf",
        lr_scheduler_type="cosine",
        load_best_model_at_end=True,
        metric_for_best_model="loss",
        greater_is_better=False,
    )

    data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

    optimizer = GrokAdamW(
        model.parameters(),
        lr=LEARNING_RATE,
        betas=(0.9, 0.999),
        eps=1e-8,
        weight_decay=0.01,
        alpha_init=0.98,
        lamb=2.0,
        gamma=0.1,
        grokking_signal_fns=[grokking_signal_fn],
        grokking_signal_decay_rate=0.1,
        gradient_clipping=1.0
    )

    logger.info("πŸƒβ€β™‚οΈ Initializing Trainer with GrokAdamW")
    global trainer
    trainer = CustomTrainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_dataset,
        eval_dataset=tokenized_dataset.select(range(min(1000, len(tokenized_dataset)))),
        data_collator=data_collator,
        optimizers=(optimizer, None),
    )

    logger.info("πŸ”₯ Starting the training with GrokAdamW")
    try:
        trainer.train()
    except Exception as e:
        logger.error(f"❌ Training failed: {str(e)}")
        return

    logger.info("πŸ’Ύ Saving the model")
    try:
        trainer.save_model(OUTPUT_DIR)
    except Exception as e:
        logger.error(f"❌ Failed to save model: {str(e)}")

    logger.info("πŸŽ‰ Finetuning with GrokAdamW completed!")

if __name__ == "__main__":
    main()

πŸš€ Now go forth and train, accelerate that code!

Note: You'll need about 14GB of VRAM. If you have 8GB, change to batch size 4.

Results will appear in ./capybara_finetuned_results


Author

Nisten Tahiraj
🏒 rakun.ai
πŸ“ Toronto, Canada


Happy training!

Downloads last month
499
GGUF
Model size
181M params
Architecture
llama

8-bit

16-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nisten/Biggie-SmoLlm-0.15B-Base

Quantized
(13)
this model
Finetunes
2 models
Quantizations
4 models

Dataset used to train nisten/Biggie-SmoLlm-0.15B-Base

Spaces using nisten/Biggie-SmoLlm-0.15B-Base 4