whisper-ckm-5 / README.md
ninninz's picture
ninninz/whisper-large-v3-croatian_20
041e8cc verified
---
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: whisper-large-v3-croarian_20
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 83.40793489318413
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-croarian_20
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1365
- Wer: 83.4079
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0155 | 16.13 | 1000 | 0.9912 | 75.1780 |
| 0.0035 | 32.26 | 2000 | 1.0831 | 86.9583 |
| 0.0033 | 48.39 | 3000 | 1.1230 | 81.2614 |
| 0.0031 | 64.52 | 4000 | 1.1365 | 83.4079 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1