CAT-LM: Aligned Code And Tests Language Model

Model Description

CAT-LM is a GPT-style language model with 2.7 Billion parameters, trained on a corpus of Python and Java projects (~260GB). It supports a maximum sequence length of 8,192 tokens. We utilize a novel pretraining signal that explicitly considers the mapping between code and test files when available.

Publication

CAT-LM: Training Language Models on Aligned Code And Tests
Nikitha Rao*, Kush Jain*, Uri Alon, Claire Le Goues, and Vincent J. Hellendoorn
38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023)

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('nikitharao/catlm', use_fast = False)
model = AutoModelForCausalLM.from_pretrained('nikitharao/catlm')

prompt = """
def add(x,y):
    \"\"\"Add two numbers x and y\"\"\"
    return x+y
<|codetestpair|>
"""

print('Input prompt:')
print(prompt)
       
input_ids = tokenizer(prompt, return_tensors="pt").input_ids

# The model was trained without the `</s>` token and should be removed.
if tokenizer.decode(input_ids[0,-1]) == '</s>':
    input_ids = input_ids[:,:-1]

print(input_ids)
len_input = input_ids.shape[1]

sample_output = model.generate(
    input_ids,
    do_sample=True, 
    max_new_tokens = 512,
    top_k=50, 
    top_p=0.95,
    temperature=0.2
)
generated_output = sample_output[0][len_input:]
output = tokenizer.decode(generated_output, skip_special_tokens=True)
print('Output:')
print(output)

Note: The model was trained without the </s> token and should be removed.

Please see https://github.com/RaoNikitha/CAT-LM for more details.

Downloads last month
198
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.