metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-finetuned-glue_sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9243119266055045
- name: F1
type: f1
value: 0.9243119266055045
bert-base-uncased-finetuned-glue_sst2
This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3392
- Accuracy: 0.9243
- F1: 0.9243
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.1818 | 1.0 | 4210 | 0.2472 | 0.9209 | 0.9208 |
0.1268 | 2.0 | 8420 | 0.3171 | 0.9232 | 0.9232 |
0.0826 | 3.0 | 12630 | 0.3392 | 0.9243 | 0.9243 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0