File size: 3,832 Bytes
a210231 36c6c65 5b407d9 a210231 890f3ab a210231 36c6c65 a210231 68701fa a210231 68701fa a210231 eeeff76 a210231 68701fa 5b407d9 c642788 890f3ab a210231 2d7c649 68701fa 2d7c649 a210231 5b407d9 a210231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentiment-polish-gpt2-small
results:
- task:
type: text-classification
dataset:
type: allegro/klej-polemo2-out
name: klej-polemo2-out
metrics:
- type: accuracy
value: 98.38%
license: mit
language:
- pl
datasets:
- clarin-pl/polemo2-official
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-polish-gpt2-small
This model was trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small) on the [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4659
- Accuracy: 0.9627
## Model description
Trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small)
## Intended uses & limitations
Sentiment analysis - neutral/negative/positive/ambiguous
## Training and evaluation data
Merged all rows from [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset.
Train/test split: 80%/20%
Datacollator:
```py
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(
tokenizer=tokenizer,
padding="longest",
max_length=128,
pad_to_multiple_of=8
)
```
## Training procedure
GPU: RTX 3090
Training time: 2:53:05
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4049 | 1.0 | 3284 | 0.3351 | 0.8792 |
| 0.1885 | 2.0 | 6568 | 0.2625 | 0.9218 |
| 0.1182 | 3.0 | 9852 | 0.2583 | 0.9419 |
| 0.0825 | 4.0 | 13136 | 0.2886 | 0.9482 |
| 0.0586 | 5.0 | 16420 | 0.3343 | 0.9538 |
| 0.034 | 6.0 | 19704 | 0.3734 | 0.9595 |
| 0.0288 | 7.0 | 22988 | 0.4125 | 0.9599 |
| 0.0185 | 8.0 | 26273 | 0.4262 | 0.9626 |
| 0.0069 | 9.0 | 29557 | 0.4529 | 0.9622 |
| 0.0059 | 10.0 | 32840 | 0.4659 | 0.9627 |
### Evaluation
Evaluated on [allegro/klej-polemo2-out](https://huggingface.co/datasets/allegro/klej-polemo2-out) test dataset.
```py
from datasets import load_dataset
from evaluate import evaluator
data = load_dataset("allegro/klej-polemo2-out", split="test").shuffle(seed=42)
task_evaluator = evaluator("text-classification")
# fix labels
l = {
"__label__meta_zero": 0,
"__label__meta_minus_m": 1,
"__label__meta_plus_m": 2,
"__label__meta_amb": 3
}
def fix_labels(examples):
examples["target"] = l[examples["target"]]
return examples
data = data.map(fix_labels)
eval_resutls = task_evaluator.compute(
model_or_pipeline="nie3e/sentiment-polish-gpt2-small",
data=data,
label_mapping={"NEUTRAL": 0, "NEGATIVE": 1, "POSITIVE": 2, "AMBIGUOUS": 3},
input_column="sentence",
label_column="target"
)
print(eval_resutls)
```
```json
{
"accuracy": 0.9838056680161943,
"total_time_in_seconds": 5.2441766999982065,
"samples_per_second": 94.1997244296076,
"latency_in_seconds": 0.010615742307688678
}
```
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0 |