File size: 3,832 Bytes
a210231
 
 
 
 
 
36c6c65
5b407d9
 
 
 
 
 
 
 
 
a210231
 
 
890f3ab
 
a210231
 
 
 
 
36c6c65
a210231
68701fa
a210231
 
 
 
 
 
68701fa
a210231
 
 
eeeff76
a210231
 
68701fa
 
 
 
 
 
 
5b407d9
 
 
 
 
 
c642788
890f3ab
a210231
 
2d7c649
68701fa
2d7c649
 
a210231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b407d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a210231
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentiment-polish-gpt2-small
  results:
  - task:
      type: text-classification
    dataset:
      type: allegro/klej-polemo2-out
      name: klej-polemo2-out
    metrics:
      - type: accuracy
        value: 98.38%
license: mit
language:
- pl
datasets:
- clarin-pl/polemo2-official
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sentiment-polish-gpt2-small

This model was trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small) on the [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4659
- Accuracy: 0.9627

## Model description

Trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small)

## Intended uses & limitations

Sentiment analysis - neutral/negative/positive/ambiguous

## Training and evaluation data
Merged all rows from [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset.

Train/test split: 80%/20%

Datacollator:
```py
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(
  tokenizer=tokenizer,
  padding="longest",
  max_length=128,
  pad_to_multiple_of=8
)
```

## Training procedure

GPU: RTX 3090

Training time: 2:53:05

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4049        | 1.0   | 3284  | 0.3351          | 0.8792   |
| 0.1885        | 2.0   | 6568  | 0.2625          | 0.9218   |
| 0.1182        | 3.0   | 9852  | 0.2583          | 0.9419   |
| 0.0825        | 4.0   | 13136 | 0.2886          | 0.9482   |
| 0.0586        | 5.0   | 16420 | 0.3343          | 0.9538   |
| 0.034         | 6.0   | 19704 | 0.3734          | 0.9595   |
| 0.0288        | 7.0   | 22988 | 0.4125          | 0.9599   |
| 0.0185        | 8.0   | 26273 | 0.4262          | 0.9626   |
| 0.0069        | 9.0   | 29557 | 0.4529          | 0.9622   |
| 0.0059        | 10.0  | 32840 | 0.4659          | 0.9627   |

### Evaluation

Evaluated on [allegro/klej-polemo2-out](https://huggingface.co/datasets/allegro/klej-polemo2-out) test dataset.
```py
from datasets import load_dataset
from evaluate import evaluator

data = load_dataset("allegro/klej-polemo2-out", split="test").shuffle(seed=42)
task_evaluator = evaluator("text-classification")

# fix labels
l = {
        "__label__meta_zero": 0,
        "__label__meta_minus_m": 1,
        "__label__meta_plus_m": 2,
        "__label__meta_amb": 3
    }
def fix_labels(examples):
    examples["target"] = l[examples["target"]]
    return examples
data = data.map(fix_labels)

eval_resutls = task_evaluator.compute(
    model_or_pipeline="nie3e/sentiment-polish-gpt2-small",
    data=data,
    label_mapping={"NEUTRAL": 0, "NEGATIVE": 1, "POSITIVE": 2, "AMBIGUOUS": 3},
    input_column="sentence",
    label_column="target"
)

print(eval_resutls)
```

```json
{
    "accuracy": 0.9838056680161943,
    "total_time_in_seconds": 5.2441766999982065,
    "samples_per_second": 94.1997244296076,
    "latency_in_seconds": 0.010615742307688678
}
```

### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0