sentiment-polish-gpt2-small

This model was trained from polish-gpt2-small on the polemo2-official dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4659
  • Accuracy: 0.9627

Model description

Trained from polish-gpt2-small

Intended uses & limitations

Sentiment analysis - neutral/negative/positive/ambiguous

Training and evaluation data

Merged all rows from polemo2-official dataset.

Train/test split: 80%/20%

Datacollator:

from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(
  tokenizer=tokenizer,
  padding="longest",
  max_length=128,
  pad_to_multiple_of=8
)

Training procedure

GPU: RTX 3090

Training time: 2:53:05

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4049 1.0 3284 0.3351 0.8792
0.1885 2.0 6568 0.2625 0.9218
0.1182 3.0 9852 0.2583 0.9419
0.0825 4.0 13136 0.2886 0.9482
0.0586 5.0 16420 0.3343 0.9538
0.034 6.0 19704 0.3734 0.9595
0.0288 7.0 22988 0.4125 0.9599
0.0185 8.0 26273 0.4262 0.9626
0.0069 9.0 29557 0.4529 0.9622
0.0059 10.0 32840 0.4659 0.9627

Evaluation

Evaluated on allegro/klej-polemo2-out test dataset.

from datasets import load_dataset
from evaluate import evaluator

data = load_dataset("allegro/klej-polemo2-out", split="test").shuffle(seed=42)
task_evaluator = evaluator("text-classification")

# fix labels
l = {
        "__label__meta_zero": 0,
        "__label__meta_minus_m": 1,
        "__label__meta_plus_m": 2,
        "__label__meta_amb": 3
    }
def fix_labels(examples):
    examples["target"] = l[examples["target"]]
    return examples
data = data.map(fix_labels)

eval_resutls = task_evaluator.compute(
    model_or_pipeline="nie3e/sentiment-polish-gpt2-small",
    data=data,
    label_mapping={"NEUTRAL": 0, "NEGATIVE": 1, "POSITIVE": 2, "AMBIGUOUS": 3},
    input_column="sentence",
    label_column="target"
)

print(eval_resutls)
{
    "accuracy": 0.9838056680161943,
    "total_time_in_seconds": 5.2441766999982065,
    "samples_per_second": 94.1997244296076,
    "latency_in_seconds": 0.010615742307688678
}

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
18
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train nie3e/sentiment-polish-gpt2-small

Evaluation results