|
--- |
|
license: mit |
|
base_model: openai-community/gpt2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: gpt2-lang-ident |
|
results: [] |
|
pipeline_tag: text-classification |
|
language: |
|
- af |
|
- am |
|
- ar |
|
- as |
|
- az |
|
- ba |
|
- be |
|
- bg |
|
- bn |
|
- ca |
|
- ceb |
|
- ckb |
|
- cs |
|
- cy |
|
- da |
|
- de |
|
- dv |
|
- el |
|
- en |
|
- eo |
|
- es |
|
- et |
|
- eu |
|
- fa |
|
- fi |
|
- fr |
|
- fy |
|
- ga |
|
- gd |
|
- gl |
|
- gu |
|
- he |
|
- hi |
|
- hr |
|
- hu |
|
- hy |
|
- id |
|
- is |
|
- it |
|
- ja |
|
- ka |
|
- kk |
|
- kn |
|
- ku |
|
- ky |
|
- la |
|
- lb |
|
- lt |
|
- lv |
|
- mg |
|
- mk |
|
- ml |
|
- mn |
|
- mr |
|
- mt |
|
- my |
|
- nds |
|
- ne |
|
- nl |
|
- nn |
|
- no |
|
- or |
|
- pa |
|
- pl |
|
- ps |
|
- pt |
|
- ro |
|
- ru |
|
- sah |
|
- sd |
|
- si |
|
- sk |
|
- sl |
|
- sq |
|
- sr |
|
- sv |
|
- sw |
|
- ta |
|
- te |
|
- tg |
|
- th |
|
- tk |
|
- tl |
|
- tr |
|
- tt |
|
- ug |
|
- uk |
|
- ur |
|
- vi |
|
- yi |
|
--- |
|
|
|
# gpt2-lang-ident |
|
|
|
This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on sampled sentences from `stanford-oval/ccnews` and `qanastek/EMEA-V3` datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1210 |
|
- Accuracy: 0.9721 |
|
|
|
## Model description |
|
|
|
This model is trained to predict the language of the input text. |
|
|
|
## Intended uses & limitations |
|
|
|
The model can predict the following languages: |
|
The model can predict the following 90 languages: |
|
``` |
|
[ |
|
"af", "am", "ar", "as", "az", "ba", "be", "bg", "bn", "ca", |
|
"ceb", "ckb", "cs", "cy", "da", "de", "dv", "el", "en", "eo", |
|
"es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", |
|
"gu", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", |
|
"ka", "kk", "kn", "ku", "ky", "la", "lb", "lt", "lv", "mg", |
|
"mk", "ml", "mn", "mr", "mt", "my", "nds", "ne", "nl", "nn", |
|
"no", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sah", "sd", |
|
"si", "sk", "sl", "sq", "sr", "sv", "sw", "ta", "te", "tg", |
|
"th", "tk", "tl", "tr", "tt", "ug", "uk", "ur", "vi", "yi" |
|
] |
|
``` |
|
|
|
How to use: |
|
|
|
```python |
|
from transformers import (AutoModelForSequenceClassification, AutoTokenizer, |
|
pipeline) |
|
|
|
checkpoint = f"nie3e/gpt2-lang-ident" |
|
model = AutoModelForSequenceClassification.from_pretrained(checkpoint) |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
|
|
pipe = pipeline( |
|
task="text-classification", |
|
model=model, |
|
tokenizer=tokenizer, |
|
top_k=5 |
|
) |
|
|
|
result = pipe("To jest model służący do identyfikacji języka!") |
|
print(result) |
|
``` |
|
``` |
|
[[{'label': 'pl', 'score': 0.9999653100967407}, {'label': 'sr', 'score': 1.5228776646836195e-05}, {'label': 'hr', 'score': 1.057955432770541e-05}, {'label': 'bn', 'score': 1.590750912328076e-06}, {'label': 'cs', 'score': 1.3942196801508544e-06}]] |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
<details><summary>Training data ([lang]: count)</summary> |
|
|
|
[bn]: 1947 |
|
[ar]: 1947 |
|
[vi]: 1947 |
|
[uk]: 1947 |
|
[kn]: 1947 |
|
[mr]: 1947 |
|
[id]: 1947 |
|
[te]: 1947 |
|
[no]: 1947 |
|
[ru]: 1947 |
|
[he]: 1947 |
|
[az]: 1947 |
|
[ca]: 1946 |
|
[fa]: 1946 |
|
[hi]: 1946 |
|
[th]: 1946 |
|
[tr]: 1946 |
|
[mk]: 1946 |
|
[ta]: 1945 |
|
[sq]: 1945 |
|
[ur]: 1942 |
|
[gu]: 1939 |
|
[ml]: 1936 |
|
[is]: 1738 |
|
[de]: 1543 |
|
[da]: 1521 |
|
[fi]: 1461 |
|
[el]: 1431 |
|
[nl]: 1424 |
|
[fr]: 1408 |
|
[cs]: 1401 |
|
[es]: 1397 |
|
[en]: 1394 |
|
[lt]: 1392 |
|
[hu]: 1379 |
|
[pt]: 1375 |
|
[lv]: 1373 |
|
[it]: 1360 |
|
[pl]: 1355 |
|
[sk]: 1355 |
|
[et]: 1348 |
|
[sl]: 1328 |
|
[sv]: 1300 |
|
[bg]: 1278 |
|
[mt]: 1234 |
|
[ro]: 1218 |
|
[kk]: 1179 |
|
[hy]: 1176 |
|
[or]: 1112 |
|
[pa]: 780 |
|
[sr]: 744 |
|
[as]: 735 |
|
[hr]: 722 |
|
[ne]: 626 |
|
[gl]: 566 |
|
[ckb]: 563 |
|
[ka]: 560 |
|
[ug]: 485 |
|
[ky]: 453 |
|
[eu]: 351 |
|
[ps]: 311 |
|
[tl]: 307 |
|
[fy]: 290 |
|
[mn]: 289 |
|
[si]: 244 |
|
[cy]: 214 |
|
[nn]: 212 |
|
[ku]: 195 |
|
[tg]: 176 |
|
[am]: 141 |
|
[tt]: 121 |
|
[ja]: 104 |
|
[lb]: 93 |
|
[tk]: 72 |
|
[be]: 64 |
|
[sw]: 45 |
|
[af]: 44 |
|
[my]: 40 |
|
[ceb]: 35 |
|
[la]: 33 |
|
[dv]: 20 |
|
[ba]: 19 |
|
[ga]: 19 |
|
[eo]: 19 |
|
[gd]: 16 |
|
[mg]: 15 |
|
[yi]: 14 |
|
[sah]: 14 |
|
[sd]: 11 |
|
[nds]: 11 |
|
</details> |
|
|
|
<details><summary>Eval data ([lang]: count)</summary> |
|
|
|
[te]: 195 |
|
[mk]: 195 |
|
[bn]: 195 |
|
[uk]: 195 |
|
[hi]: 195 |
|
[ar]: 195 |
|
[sq]: 195 |
|
[kn]: 195 |
|
[tr]: 195 |
|
[ca]: 195 |
|
[az]: 195 |
|
[fa]: 195 |
|
[ru]: 195 |
|
[mr]: 195 |
|
[id]: 195 |
|
[no]: 195 |
|
[vi]: 195 |
|
[th]: 195 |
|
[he]: 195 |
|
[gu]: 194 |
|
[ml]: 194 |
|
[ta]: 194 |
|
[ur]: 194 |
|
[is]: 174 |
|
[de]: 154 |
|
[da]: 152 |
|
[fi]: 146 |
|
[el]: 143 |
|
[nl]: 142 |
|
[fr]: 141 |
|
[es]: 140 |
|
[cs]: 140 |
|
[en]: 139 |
|
[lt]: 139 |
|
[hu]: 138 |
|
[lv]: 137 |
|
[pt]: 137 |
|
[it]: 136 |
|
[et]: 135 |
|
[pl]: 135 |
|
[sk]: 135 |
|
[sl]: 133 |
|
[sv]: 130 |
|
[bg]: 128 |
|
[mt]: 123 |
|
[ro]: 122 |
|
[hy]: 118 |
|
[kk]: 118 |
|
[or]: 111 |
|
[pa]: 78 |
|
[sr]: 74 |
|
[as]: 74 |
|
[hr]: 72 |
|
[ne]: 63 |
|
[gl]: 57 |
|
[ckb]: 56 |
|
[ka]: 56 |
|
[ug]: 49 |
|
[ky]: 45 |
|
[eu]: 35 |
|
[ps]: 31 |
|
[tl]: 31 |
|
[mn]: 29 |
|
[fy]: 29 |
|
[si]: 24 |
|
[nn]: 21 |
|
[cy]: 21 |
|
[ku]: 19 |
|
[tg]: 18 |
|
[am]: 14 |
|
[tt]: 12 |
|
[ja]: 10 |
|
[lb]: 9 |
|
[tk]: 7 |
|
[be]: 6 |
|
[my]: 4 |
|
[sw]: 4 |
|
[af]: 4 |
|
[ceb]: 3 |
|
[la]: 3 |
|
[ba]: 2 |
|
[dv]: 2 |
|
[eo]: 2 |
|
[gd]: 2 |
|
[ga]: 2 |
|
[mg]: 1 |
|
[sd]: 1 |
|
[nds]: 1 |
|
[yi]: 1 |
|
[sah]: 1 |
|
</details> |
|
|
|
### Training procedure |
|
|
|
GPU: RTX 3090 \ |
|
Training time: 1h 53min |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.2833 | 1.0 | 2812 | 0.2004 | 0.94 | |
|
| 0.168 | 2.0 | 5625 | 0.1567 | 0.954 | |
|
| 0.1131 | 3.0 | 8437 | 0.1429 | 0.9586 | |
|
| 0.0832 | 4.0 | 11250 | 0.1257 | 0.967 | |
|
| 0.0635 | 5.0 | 14062 | 0.1222 | 0.9682 | |
|
| 0.0479 | 6.0 | 16875 | 0.1214 | 0.9704 | |
|
| 0.0361 | 7.0 | 19687 | 0.1255 | 0.9712 | |
|
| 0.0258 | 8.0 | 22500 | 0.1178 | 0.9712 | |
|
| 0.0243 | 9.0 | 25312 | 0.1223 | 0.9724 | |
|
| 0.0171 | 10.0 | 28120 | 0.1210 | 0.9721 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |