metadata
license: apache-2.0
base_model: nidum/Nidum-Llama-3.2-3B-Uncensored
library_name: adapter-transformers
tags:
- chemistry
- biology
- legal
- code
- medical
- finance
- mlx
pipeline_tag: text-generation
nidum/Nidum-Llama-3.2-3B-Uncensored-MLX-4bit
The Model nidum/Nidum-Llama-3.2-3B-Uncensored-MLX-4bit was converted to MLX format from nidum/Nidum-Llama-3.2-3B-Uncensored using mlx-lm version 0.19.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("nidum/Nidum-Llama-3.2-3B-Uncensored-MLX-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)