|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- nidum/Nidum-Llama-3.2-3B-Uncensored |
|
- meta-llama/Llama-3.2-3B |
|
library_name: adapter-transformers |
|
tags: |
|
- chemistry |
|
- biology |
|
- legal |
|
- code |
|
- medical |
|
- finance |
|
- roleplay |
|
- uncensored |
|
- uncensored LLM |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
### Nidum-Llama-3.2-3B-Uncensored |
|
|
|
### Welcome to Nidum! |
|
At Nidum, we believe in pushing the boundaries of innovation by providing advanced and unrestricted AI models for every application. Dive into our world of possibilities and experience the freedom of **Nidum-Llama-3.2-3B-Uncensored**, tailored to meet diverse needs with exceptional performance. |
|
|
|
--- |
|
|
|
[![GitHub Icon](https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Font_Awesome_5_brands_github.svg/232px-Font_Awesome_5_brands_github.svg.png)](https://github.com/NidumAI-Inc) |
|
**Explore Nidum's Open-Source Projects on GitHub**: [https://github.com/NidumAI-Inc](https://github.com/NidumAI-Inc) |
|
|
|
--- |
|
### Key Features |
|
|
|
1. **Uncensored Responses**: Capable of addressing any query without content restrictions, offering detailed and uninhibited answers. |
|
2. **Versatility**: Excels in diverse use cases, from complex technical queries to engaging casual conversations. |
|
3. **Advanced Contextual Understanding**: Draws from an expansive knowledge base for accurate and context-aware outputs. |
|
4. **Extended Context Handling**: Optimized for handling long-context interactions for improved continuity and depth. |
|
5. **Customizability**: Adaptable to specific tasks and user preferences through fine-tuning. |
|
|
|
--- |
|
|
|
### Use Cases |
|
|
|
- **Open-Ended Q&A** |
|
- **Creative Writing and Ideation** |
|
- **Research Assistance** |
|
- **Educational Queries** |
|
- **Casual Conversations** |
|
- **Mathematical Problem Solving** |
|
- **Long-Context Dialogues** |
|
|
|
--- |
|
|
|
### How to Use |
|
|
|
To start using **Nidum-Llama-3.2-3B-Uncensored**, follow the sample code below: |
|
|
|
```python |
|
import torch |
|
from transformers import pipeline |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model="nidum/Nidum-Llama-3.2-3B-Uncensored", |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device="cuda", # replace with "mps" to run on a Mac device |
|
) |
|
|
|
messages = [ |
|
{"role": "user", "content": "Tell me something fascinating."}, |
|
] |
|
|
|
outputs = pipe(messages, max_new_tokens=256) |
|
assistant_response = outputs[0]["generated_text"][-1]["content"].strip() |
|
print(assistant_response) |
|
``` |
|
|
|
--- |
|
#### Quantized Models Available for Download |
|
|
|
| **Quantized Model Version** | **Description** | |
|
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------| |
|
| [**Nidum-Llama-3.2-3B-Uncensored-F16.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/Nidum-Llama-3.2-3B-Uncensored-F16.gguf) | Full 16-bit floating point precision for maximum accuracy on high-end GPUs. | |
|
| [**model-Q2_K.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q2_K.gguf) | Optimized for minimal memory usage with lower precision, suitable for edge cases.| |
|
| [**model-Q3_K_L.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q3_K_L.gguf) | Balanced precision with enhanced memory efficiency for medium-range devices. | |
|
| [**model-Q3_K_M.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q3_K_M.gguf) | Mid-range quantization for moderate precision and memory usage balance. | |
|
| [**model-Q3_K_S.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q3_K_S.gguf) | Smaller quantization steps, offering moderate precision with reduced memory use.| |
|
| [**model-Q4_0_4_4.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_0_4_4.gguf) | Performance-optimized for low memory, ideal for lightweight deployment. | |
|
| [**model-Q4_0_4_8.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_0_4_8.gguf) | Extended quantization balancing memory use and inference speed. | |
|
| [**model-Q4_0_8_8.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_0_8_8.gguf) | Advanced memory precision targeting larger contexts. | |
|
| [**model-Q4_K_M.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_K_M.gguf) | High-efficiency quantization for moderate GPU resources. | |
|
| [**model-Q4_K_S.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q4_K_S.gguf) | Optimized for smaller-scale operations with compact memory footprint. | |
|
| [**model-Q5_K_M.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q5_K_M.gguf) | Balances performance and precision, ideal for robust inferencing environments. | |
|
| [**model-Q5_K_S.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q5_K_S.gguf) | Moderate quantization targeting performance with minimal resource usage. | |
|
| [**model-Q6_K.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-Q6_K.gguf) | High-precision quantization for accurate and stable inferencing tasks. | |
|
| [**model-TQ1_0.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-TQ1_0.gguf) | Experimental quantization for targeted applications in test environments. | |
|
| [**model-TQ2_0.gguf**](https://huggingface.co/nidum/Nidum-Llama-3.2-3B-Uncensored-GGUF/blob/main/model-TQ2_0.gguf) | High-performance tuning for experimental use cases and flexible precision. | |
|
|
|
--- |
|
### Datasets and Fine-Tuning |
|
|
|
The following fine-tuning datasets are leveraged to enhance specific model capabilities: |
|
|
|
- **Uncensored Data**: Enables unrestricted and uninhibited responses. |
|
- **RAG-Based Fine-Tuning**: Optimizes retrieval-augmented generation for knowledge-intensive tasks. |
|
- **Long Context Fine-Tuning**: Enhances the model's ability to process and maintain coherence in extended conversations. |
|
- **Math-Instruct Data**: Specially curated for precise and contextually accurate mathematical reasoning. |
|
|
|
--- |
|
|
|
### Benchmarks |
|
|
|
After fine-tuning with **uncensored data**, **Nidum-Llama-3.2-3B** demonstrates **superior performance compared to the original LLaMA model**, particularly in accuracy and handling diverse, unrestricted scenarios. |
|
|
|
#### Benchmark Summary Table |
|
|
|
| **Benchmark** | **Metric** | **LLaMA 3.2 3B** | **Nidum 3.2 3B** | **Observation** | |
|
|-------------------|-----------------------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------| |
|
| **GPQA** | Exact Match (Flexible) | 0.3 | 0.5 | Nidum 3B demonstrates significant improvement, particularly in **generative tasks**. | |
|
| | Accuracy | 0.4 | 0.5 | Consistent improvement, especially in **zero-shot** scenarios. | |
|
| **HellaSwag** | Accuracy | 0.3 | 0.4 | Better performance in **common sense reasoning** tasks. | |
|
| | Normalized Accuracy | 0.3 | 0.4 | Enhanced ability to understand and predict context in sentence completion. | |
|
| | Normalized Accuracy (Stderr) | 0.15275 | 0.1633 | Slightly improved consistency in normalized accuracy. | |
|
| | Accuracy (Stderr) | 0.15275 | 0.1633 | Shows robustness in reasoning accuracy compared to LLaMA 3B. | |
|
|
|
--- |
|
|
|
### Insights: |
|
1. **GPQA Results**: Fine-tuning on uncensored data has boosted **Nidum 3B's Exact Match and Accuracy**, particularly excelling in **generative** and **zero-shot** tasks involving domain-specific knowledge. |
|
2. **HellaSwag Results**: **Nidum 3B** consistently outperforms **LLaMA 3B** in **common sense reasoning benchmarks**, indicating enhanced contextual and semantic understanding. |
|
|
|
--- |
|
|
|
### Contributing |
|
|
|
We welcome contributions to improve and extend the model’s capabilities. Stay tuned for updates on how to contribute. |
|
|
|
--- |
|
|
|
### Contact |
|
|
|
For inquiries, collaborations, or further information, please reach out to us at **[email protected]**. |
|
|
|
--- |
|
|
|
### Explore the Possibilities |
|
|
|
Dive into unrestricted creativity and innovation with **Nidum Llama 3.2 3B Uncensored**! |