librarian-bot's picture
Librarian Bot: Add base_model information to model
4cbfc7d
|
raw
history blame
2.91 kB
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tner/ontonotes5
metrics:
- precision
- recall
- f1
- accuracy
widget:
- text: 'Hi! I am jack. I live in California and I work for Apple '
example_title: Example 1
- text: 'Thi book is amazing! I bought it on Amazon for 4$. '
example_title: Example 2
base_model: bert-base-cased
model-index:
- name: bert-finetuned-ner-ontonotes
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: ontonotes5
type: ontonotes5
config: ontonotes5
split: train
args: ontonotes5
metrics:
- type: precision
value: 0.8567258883248731
name: Precision
- type: recall
value: 0.8841595180407308
name: Recall
- type: f1
value: 0.8702265476459025
name: F1
- type: accuracy
value: 0.9754933764288157
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner-ontonotes
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ontonotes5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1503
- Precision: 0.8567
- Recall: 0.8842
- F1: 0.8702
- Accuracy: 0.9755
## Model description
Token classification experiment, NER, on business topics.
## Intended uses & limitations
The model can be used on token classification, in particular NER. It is fine tuned on business topic.
## Training and evaluation data
The dataset used is [ontonotes5](https://huggingface.co/datasets/tner/ontonotes5)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0842 | 1.0 | 7491 | 0.0950 | 0.8524 | 0.8715 | 0.8618 | 0.9745 |
| 0.0523 | 2.0 | 14982 | 0.1044 | 0.8449 | 0.8827 | 0.8634 | 0.9744 |
| 0.036 | 3.0 | 22473 | 0.1118 | 0.8529 | 0.8843 | 0.8683 | 0.9760 |
| 0.0231 | 4.0 | 29964 | 0.1240 | 0.8589 | 0.8805 | 0.8696 | 0.9752 |
| 0.0118 | 5.0 | 37455 | 0.1416 | 0.8570 | 0.8804 | 0.8685 | 0.9753 |
| 0.0077 | 6.0 | 44946 | 0.1503 | 0.8567 | 0.8842 | 0.8702 | 0.9755 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1