nickmuchi's picture
Update README.md
19451f5
metadata
tags:
  - generated_from_trainer
  - finance
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: finbert-tone-finetuned-finance-text-classification
    results: []
datasets:
  - nickmuchi/financial-text-combo-classification
language:
  - en

finbert-tone-finetuned-finance-text-classification

This model is a fine-tuned version of yiyanghkust/finbert-tone on the nickmuchi/financial-text-combo-classification dataset which is a combined dataset of financial_phrasebank,FinanceInc/auditor_sentiment and zeroshot/twitter-financial-news-sentiment. It achieves the following results on the evaluation set:

  • Loss: 0.6645
  • Accuracy: 0.9097
  • F1: 0.9102
  • Precision: 0.9110
  • Recall: 0.9097

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 141 0.3934 0.8431 0.8427 0.8456 0.8431
No log 2.0 282 0.3214 0.8843 0.8843 0.8867 0.8843
No log 3.0 423 0.3302 0.8882 0.8902 0.8965 0.8882
0.4444 4.0 564 0.3611 0.8980 0.8993 0.9026 0.8980
0.4444 5.0 705 0.4006 0.8975 0.8987 0.9014 0.8975
0.4444 6.0 846 0.4517 0.9037 0.9043 0.9057 0.9037
0.4444 7.0 987 0.5324 0.9027 0.9035 0.9057 0.9027
0.0406 8.0 1128 0.5308 0.9063 0.9074 0.9098 0.9063
0.0406 9.0 1269 0.5586 0.9081 0.9084 0.9089 0.9081
0.0406 10.0 1410 0.5783 0.9076 0.9080 0.9086 0.9076
0.0121 11.0 1551 0.5741 0.9115 0.9116 0.9121 0.9115
0.0121 12.0 1692 0.6288 0.9104 0.9108 0.9115 0.9104
0.0121 13.0 1833 0.6328 0.9050 0.9059 0.9078 0.9050
0.0121 14.0 1974 0.6887 0.9042 0.9054 0.9088 0.9042
0.0063 15.0 2115 0.6345 0.9086 0.9094 0.9109 0.9086
0.0063 16.0 2256 0.6545 0.9102 0.9103 0.9108 0.9102
0.0063 17.0 2397 0.6585 0.9086 0.9092 0.9103 0.9086
0.0033 18.0 2538 0.6676 0.9081 0.9087 0.9098 0.9081
0.0033 19.0 2679 0.6614 0.9110 0.9113 0.9119 0.9110
0.0033 20.0 2820 0.6645 0.9097 0.9102 0.9110 0.9097

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2