distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.1005
- Accuracy: 0.94
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.903 | 1.0 | 318 | 0.5766 | 0.7310 |
0.4492 | 2.0 | 636 | 0.2856 | 0.8771 |
0.2535 | 3.0 | 954 | 0.1800 | 0.9226 |
0.1767 | 4.0 | 1272 | 0.1398 | 0.9310 |
0.1424 | 5.0 | 1590 | 0.1212 | 0.9335 |
0.1245 | 6.0 | 1908 | 0.1118 | 0.9381 |
0.1143 | 7.0 | 2226 | 0.1063 | 0.9432 |
0.1077 | 8.0 | 2544 | 0.1030 | 0.9426 |
0.1041 | 9.0 | 2862 | 0.1012 | 0.9403 |
0.1021 | 10.0 | 3180 | 0.1005 | 0.94 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for nichonifroa/distilbert-base-uncased-distilled-clinc
Base model
distilbert/distilbert-base-uncasedDataset used to train nichonifroa/distilbert-base-uncased-distilled-clinc
Evaluation results
- Accuracy on clinc_oosvalidation set self-reported0.940