Aira-2-355M

Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-355M is an instruction-tuned model based on GPT-2. The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).

Check our gradio-demo in Spaces.

Details

  • Size: 354,825,216 parameters
  • Dataset: Instruct-Aira Dataset
  • Language: English
  • Number of Epochs: 3
  • Batch size: 16
  • Optimizer: torch.optim.AdamW (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
  • GPU: 1 NVIDIA A100-SXM4-40GB
  • Emissions: 0.29 KgCO2 (United States of America)
  • Total Energy Consumption: 0.83 kWh

This repository has the source code used to train this model.

Usage

Three special tokens are used to mark the user side of the interaction and the model's response:

<|startofinstruction|>What is a language model?<|endofinstruction|>A language model is a probability distribution over a vocabulary.<|endofcompletion|>

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-355M')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-355M')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
  add_special_tokens=False,
  return_tensors="pt").to(device)

responses = aira.generate(**inputs,	num_return_sequences=2)

print(f"Question: 👤 {question}\n")

for i, response in  enumerate(responses):
    print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')

The model will output something like:

>>>Question: 👤 What is the capital of Brazil?

>>>Response 1: 🤖 The capital of Brazil is Brasília.
>>>Response 2: 🤖 The capital of Brazil is Brasília.

Limitations

  • Hallucinations: This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.

  • Biases and Toxicity: This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.

  • Repetition and Verbosity: The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.

Evaluation

Model Average ARC TruthfulQA ToxiGen
Aira-2-124M-DPO 40.68 24.66 42.61 54.79
Aira-2-124M 38.07 24.57 41.02 48.62
GPT-2 35.37 21.84 40.67 43.62
Aira-2-355M 39.68 27.56 38.53 53.19
GPT-2-medium 36.43 27.05 40.76 41.49
Aira-2-774M 42.26 28.75 41.33 56.70
GPT-2-large 35.16 25.94 38.71 40.85
Aira-2-1B5 42.22 28.92 41.16 56.60
GPT-2-xl 36.84 30.29 38.54 41.70

Cite as 🤗

@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://github.com/Nkluge-correa/Aira},
  author = {Nicholas Kluge Corrêa},
  title = {Aira},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
}

@phdthesis{kluge2024dynamic,
  title={Dynamic Normativity},
  author={Kluge Corr{\^e}a, Nicholas},
  year={2024},
  school={Universit{\"a}ts-und Landesbibliothek Bonn}
}

License

Aira-2-355M is licensed under the Apache License, Version 2.0. See the LICENSE file for more details.

Downloads last month
768
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nicholasKluge/Aira-2-355M

Quantizations
2 models

Dataset used to train nicholasKluge/Aira-2-355M

Collection including nicholasKluge/Aira-2-355M