|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/dinov2-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: dinov2_Liveness_detection_v2.2.1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/nguyenkhoaht002/liveness_detection/runs/wo6b0psl) |
|
# dinov2_Liveness_detection_v2.2.1 |
|
|
|
This model is a fine-tuned version of [facebook/dinov2-small](https://huggingface.co/facebook/dinov2-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0671 |
|
- Accuracy: 0.9869 |
|
- F1: 0.9868 |
|
- Recall: 0.9869 |
|
- Precision: 0.9870 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 512 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.183 | 0.8153 | 128 | 0.2473 | 0.9016 | 0.9039 | 0.9016 | 0.9123 | |
|
| 0.1022 | 1.6306 | 256 | 0.0750 | 0.9729 | 0.9727 | 0.9729 | 0.9737 | |
|
| 0.0432 | 2.4459 | 384 | 0.0575 | 0.9820 | 0.9820 | 0.9820 | 0.9823 | |
|
| 0.0247 | 3.2611 | 512 | 0.0507 | 0.9832 | 0.9832 | 0.9832 | 0.9833 | |
|
| 0.0115 | 4.0764 | 640 | 0.0536 | 0.9865 | 0.9864 | 0.9865 | 0.9866 | |
|
| 0.002 | 4.8917 | 768 | 0.0671 | 0.9869 | 0.9868 | 0.9869 | 0.9870 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.19.1 |
|
|