ComfyUI_Seg_VITON2 / stabel_vition.py
CCChen's picture
换装
1900386
import os
import shutil
import numpy as np
import torchvision.transforms as transforms
import cv2
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
import torch
from importlib import import_module
from .cldm.model import create_model
from .cldm.plms_hacked import PLMSSampler
from .utils.utils import *
from .utils.file_util import *
vition_path = node_path("ComfyUI_Seg_VITON")
cache_dir = os.path.join(vition_path,"cache")
model_load_path = os.path.join( vition_path,"checkpoints/VITONHD.ckpt")
yaml_path = os.path.join(vition_path,"configs/VITON512_COMFYUI.yaml")
def tensor2img_seg(x):
'''
x : [BS x c x H x W] or [c x H x W]
'''
if x.ndim == 3:
x = x.unsqueeze(0)
BS, C, H, W = x.shape
x = x.permute(0,2,3,1).reshape(-1, W, C).detach().cpu().numpy()
x = np.clip(x, -1, 1)
x = (x+1)/2
x = np.uint8(x*255.0)
if x.shape[-1] == 1:
x = np.concatenate([x,x,x], axis=-1)
return x
def imread(p, h, w, is_mask=False, in_inverse_mask=False, img=None):
if img is None:
img = cv2.imread(p)
if not is_mask:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (w,h))
img = (img.astype(np.float32) / 127.5) - 1.0 # [-1, 1]
else:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, (w,h))
img = (img >= 128).astype(np.float32) # 0 or 1
img = img[:,:,None]
if in_inverse_mask:
img = 1-img
return img
class stabel_vition:
def __init__(self):
self.model = None
self.sampler = None
@classmethod
def INPUT_TYPES(cls):
return {"required":
{
"agn":("IMAGE", {"default": "","multiline": False}),
"agn_mask":("MASK", {"default": "","multiline": False}),
"cloth":("IMAGE", {"default": "","multiline": False}),
"image":("IMAGE", {"default": "","multiline": False}),
"image_densepose":("IMAGE", {"default": "","multiline": False}),
"img_H": ("INT", {"default": 512, "min": 268, "max": 2048}),
"img_W": ("INT", {"default": 384, "min": 268, "max": 2048}),
"denoise_steps": ("INT", {"default": 20, "min": 5, "max": 200}),
"batch_size": ("INT", {"default": 16, "min": 0, "max": 32, "step": 16}),
"eta": ("INT", {"default": 0, "min": 0, "max": 200}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"cache": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"repaint": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
}
}
RETURN_TYPES = ("IMAGE","BOOLEAN")
RETURN_NAMES = ("image","open")
OUTPUT_NODE = True
FUNCTION = "sample"
CATEGORY = "CXH"
def sample(self,agn,agn_mask,cloth,image,image_densepose,img_H,img_W,denoise_steps,batch_size,eta,seed,cache,repaint):
seed = str(seed)
img_fn = seed+"_img.jpg"
cloth_fn = seed+"_cloth.jpg"
#创建缓存文件夹 +缓存本地(待优化直接tensor转cv2)
mkdir(cache_dir)
agnostic_v3_2_dir = os.path.join(cache_dir,seed,"agnostic_v3_2")
mkdir(agnostic_v3_2_dir)
agnostic_v3_2_img_path = os.path.join(agnostic_v3_2_dir,img_fn)
save_tensor_image(agn,agnostic_v3_2_img_path)
agnostic_mask_dir = os.path.join(cache_dir,seed,"agnostic_mask")
mkdir(agnostic_mask_dir)
agnostic_mask_img_path = os.path.join(agnostic_mask_dir,img_fn)
save_tensor_image(agn_mask,agnostic_mask_img_path)
cloth_dir = os.path.join(cache_dir,seed,"cloth")
mkdir(cloth_dir)
cloth_img_path = os.path.join(cloth_dir,img_fn)
save_tensor_image(cloth,cloth_img_path)
image_dir = os.path.join(cache_dir,seed,"image")
mkdir(image_dir)
image_img_path = os.path.join(image_dir,img_fn)
save_tensor_image(image,image_img_path)
image_densepose_dir = os.path.join(cache_dir,seed,"image_densepose")
mkdir(image_densepose_dir)
image_densepose_img_path = os.path.join(image_densepose_dir,img_fn)
save_tensor_image(image_densepose,image_densepose_img_path)
agn = imread(agnostic_v3_2_img_path, img_H, img_W)
agn_mask = imread(agnostic_mask_img_path, img_H, img_W, is_mask=True, in_inverse_mask=True)
cloth = imread(cloth_img_path, img_H, img_W)
image = imread(image_img_path, img_H, img_W)
image_densepose = imread(image_densepose_img_path, img_H, img_W)
config = OmegaConf.load(yaml_path)
config.model.params.img_H = img_H
config.model.params.img_W = img_W
params = config.model.params
if self.model == None:
self.model = create_model(config_path=None, config=config)
self.model.load_state_dict(torch.load(model_load_path, map_location="cpu"))
self.model = self.model.cuda()
self.model.eval()
if self.sampler == None:
self.sampler = PLMSSampler(self.model)
dataset = getattr(import_module("comyui_dataset"), config.dataset_name)(
img_fn,
cloth_fn,
agn,
agn_mask,
cloth,
image,
image_densepose,
)
dataloader = DataLoader(dataset, num_workers=4, shuffle=False, batch_size=batch_size, pin_memory=True)
shape = (4, img_H//8, img_W//8)
x_sample_list =[]
for batch_idx, batch in enumerate(dataloader):
print(f"{batch_idx}/{len(dataloader)}")
z, c = self.model.get_input(batch, params.first_stage_key)
bs = z.shape[0]
c_crossattn = c["c_crossattn"][0][:bs]
if c_crossattn.ndim == 4:
c_crossattn = self.model.get_learned_conditioning(c_crossattn)
c["c_crossattn"] = [c_crossattn]
uc_cross = self.model.get_unconditional_conditioning(bs)
uc_full = {"c_concat": c["c_concat"], "c_crossattn": [uc_cross]}
uc_full["first_stage_cond"] = c["first_stage_cond"]
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.cuda()
self.sampler.model.batch = batch
ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
start_code = self.model.q_sample(z, ts)
samples, _, _ = self.sampler.sample(
denoise_steps,
bs,
shape,
c,
x_T=start_code,
verbose=False,
eta=eta,
unconditional_conditioning=uc_full,
)
x_samples = self.model.decode_first_stage(samples)
for sample_idx, (x_sample, fn, cloth_fn) in enumerate(zip(x_samples, batch['img_fn'], batch["cloth_fn"])):
x_sample_img = tensor2img_seg(x_sample)
x_sample_list.append(x_sample_img)
if repaint:
repaint_agn_img = np.uint8((batch["image"][sample_idx].cpu().numpy()+1)/2 * 255) # [0,255]
repaint_agn_mask_img = batch["agn_mask"][sample_idx].cpu().numpy() # 0 or 1
x_sample_img = repaint_agn_img * repaint_agn_mask_img + x_sample_img * (1-repaint_agn_mask_img)
x_sample_img = np.uint8(x_sample_img)
to_path = os.path.join(cache_dir,seed,"result_"+str(sample_idx)+".jpg")
cv2.imwrite(to_path, x_sample_img[:,:,::-1])
if not cache:
shutil.rmtree(os.path.join(cache_dir,seed))
return pil2tensor(x_sample_list[0]),True