CCChen commited on
Commit
1900386
1 Parent(s): 4a631c0
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. __init__.py +49 -0
  2. checkpoints/模型地址.txt +0 -0
  3. cldm/__init__.py +0 -0
  4. cldm/cldm.py +137 -0
  5. cldm/hack.py +111 -0
  6. cldm/model.py +9 -0
  7. cldm/plms_hacked.py +251 -0
  8. cldm/warping_cldm_network.py +357 -0
  9. comyui_dataset.py +42 -0
  10. configs/VITON512.yaml +96 -0
  11. configs/VITON512_COMFYUI.yaml +96 -0
  12. ldm/__init__.py +0 -0
  13. ldm/__pycache__/__init__.cpython-311.pyc +0 -0
  14. ldm/__pycache__/util.cpython-310.pyc +0 -0
  15. ldm/__pycache__/util.cpython-311.pyc +0 -0
  16. ldm/data/__init__.py +0 -0
  17. ldm/data/util.py +24 -0
  18. ldm/models/__pycache__/autoencoder.cpython-310.pyc +0 -0
  19. ldm/models/__pycache__/autoencoder.cpython-311.pyc +0 -0
  20. ldm/models/autoencoder.py +202 -0
  21. ldm/models/diffusion/__init__.py +0 -0
  22. ldm/models/diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
  23. ldm/models/diffusion/__pycache__/__init__.cpython-311.pyc +0 -0
  24. ldm/models/diffusion/__pycache__/ddim.cpython-310.pyc +0 -0
  25. ldm/models/diffusion/__pycache__/ddim.cpython-311.pyc +0 -0
  26. ldm/models/diffusion/__pycache__/ddpm.cpython-310.pyc +0 -0
  27. ldm/models/diffusion/__pycache__/ddpm.cpython-311.pyc +0 -0
  28. ldm/models/diffusion/__pycache__/sampling_util.cpython-310.pyc +0 -0
  29. ldm/models/diffusion/__pycache__/sampling_util.cpython-311.pyc +0 -0
  30. ldm/models/diffusion/ddim.py +377 -0
  31. ldm/models/diffusion/ddpm.py +1875 -0
  32. ldm/models/diffusion/dpm_solver/__init__.py +1 -0
  33. ldm/models/diffusion/dpm_solver/dpm_solver.py +1154 -0
  34. ldm/models/diffusion/dpm_solver/sampler.py +87 -0
  35. ldm/models/diffusion/plms.py +244 -0
  36. ldm/models/diffusion/sampling_util.py +22 -0
  37. ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
  38. ldm/modules/__pycache__/attention.cpython-311.pyc +0 -0
  39. ldm/modules/__pycache__/ema.cpython-310.pyc +0 -0
  40. ldm/modules/__pycache__/ema.cpython-311.pyc +0 -0
  41. ldm/modules/attention.py +330 -0
  42. ldm/modules/diffusionmodules/__init__.py +0 -0
  43. ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc +0 -0
  44. ldm/modules/diffusionmodules/__pycache__/__init__.cpython-311.pyc +0 -0
  45. ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc +0 -0
  46. ldm/modules/diffusionmodules/__pycache__/model.cpython-311.pyc +0 -0
  47. ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc +0 -0
  48. ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-311.pyc +0 -0
  49. ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc +0 -0
  50. ldm/modules/diffusionmodules/__pycache__/util.cpython-311.pyc +0 -0
__init__.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from .mine_nodes import *
2
+
3
+ from .utils.file_util import *
4
+
5
+ import folder_paths
6
+ import os
7
+ import sys
8
+
9
+ # comfy_path = os.path.dirname(folder_paths.__file__)
10
+ # custom_nodes_path = os.path.join(comfy_path, "custom_nodes")
11
+ # import sys
12
+ vition_path = node_path("ComfyUI_Seg_VITON")
13
+ sys.path.append(vition_path)
14
+ # sys.path.append(os.path.join(vition_path,"cldm"))
15
+ # sys.path.append(os.path.join(vition_path,"ldm"))
16
+ # sys.path.append(os.path.join(vition_path,"ldm","data"))
17
+ sys.path.append(os.path.join(vition_path,"ldm","models"))
18
+ # sys.path.append(os.path.join(vition_path,"ldm","models","diffusion"))
19
+ # sys.path.append(os.path.join(vition_path,"ldm","models","diffusion","dpm_solver"))
20
+ # sys.path.append(os.path.join(vition_path,"ldm","modules"))
21
+ # sys.path.append(os.path.join(vition_path,"ldm","modules","diffusionmodules"))
22
+ # sys.path.append(os.path.join(vition_path,"ldm","modules","distributions"))
23
+ # sys.path.append(os.path.join(vition_path,"ldm","modules","encoders"))
24
+ # sys.path.append(os.path.join(vition_path,"ldm","modules","image_degradation"))
25
+ # sys.path.append(os.path.join(vition_path,"ldm","modules","image_degradation","utils"))
26
+ # sys.path.append(os.path.join(vition_path,"ldm","modules","image_encoders"))
27
+ # sys.path.append(os.path.join(vition_path,"ldm","modules","midas"))
28
+ # sys.path.append(os.path.join(vition_path,"ldm","modules","midas","midas"))
29
+ # sys.path.append(os.path.join(vition_path,"utils"))
30
+
31
+ from .segformer_clothes import *
32
+ from .stabel_vition import *
33
+
34
+ # A dictionary that contains all nodes you want to export with their names
35
+ # NOTE: names should be globally unique
36
+ NODE_CLASS_MAPPINGS = {
37
+ "segformer_clothes":segformer_clothes,
38
+ "segformer_agnostic":segformer_agnostic,
39
+ "segformer_remove_bg":segformer_remove_bg,
40
+ "stabel_vition":stabel_vition
41
+ }
42
+
43
+ # A dictionary that contains the friendly/humanly readable titles for the nodes
44
+ NODE_DISPLAY_NAME_MAPPINGS = {
45
+ "segformer_clothes":"segformer_clothes",
46
+ "segformer_agnostic":"segformer_agnostic",
47
+ "segformer_remove_bg":"segformer_remove_bg",
48
+ "stabel_vition":"stabel_vition"
49
+ }
checkpoints/模型地址.txt ADDED
File without changes
cldm/__init__.py ADDED
File without changes
cldm/cldm.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from os.path import join as opj
3
+ import omegaconf
4
+
5
+ import cv2
6
+ import einops
7
+ import torch
8
+ import torch as th
9
+ import torch.nn as nn
10
+ import torchvision.transforms as T
11
+ import torch.nn.functional as F
12
+ import numpy as np
13
+
14
+ from ldm.models.diffusion.ddpm import LatentDiffusion
15
+ from ldm.util import instantiate_from_config
16
+
17
+ class ControlLDM(LatentDiffusion):
18
+ def __init__(
19
+ self,
20
+ control_stage_config,
21
+ validation_config,
22
+ control_key,
23
+ only_mid_control,
24
+ use_VAEdownsample=False,
25
+ config_name="",
26
+ control_scales=None,
27
+ use_pbe_weight=False,
28
+ u_cond_percent=0.0,
29
+ img_H=512,
30
+ img_W=384,
31
+ always_learnable_param=False,
32
+ *args,
33
+ **kwargs
34
+ ):
35
+ self.control_stage_config = control_stage_config
36
+ self.use_pbe_weight = use_pbe_weight
37
+ self.u_cond_percent = u_cond_percent
38
+ self.img_H = img_H
39
+ self.img_W = img_W
40
+ self.config_name = config_name
41
+ self.always_learnable_param = always_learnable_param
42
+ super().__init__(*args, **kwargs)
43
+ control_stage_config.params["use_VAEdownsample"] = use_VAEdownsample
44
+ self.control_model = instantiate_from_config(control_stage_config)
45
+ self.control_key = control_key
46
+ self.only_mid_control = only_mid_control
47
+ if control_scales is None:
48
+ self.control_scales = [1.0] * 13
49
+ else:
50
+ self.control_scales = control_scales
51
+ self.first_stage_key_cond = kwargs.get("first_stage_key_cond", None)
52
+ self.valid_config = validation_config
53
+ self.use_VAEDownsample = use_VAEdownsample
54
+ @torch.no_grad()
55
+ def get_input(self, batch, k, bs=None, *args, **kwargs):
56
+ x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
57
+ if isinstance(self.control_key, omegaconf.listconfig.ListConfig):
58
+ control_lst = []
59
+ for key in self.control_key:
60
+ control = batch[key]
61
+ if bs is not None:
62
+ control = control[:bs]
63
+ control = control.to(self.device)
64
+ control = einops.rearrange(control, 'b h w c -> b c h w')
65
+ control = control.to(memory_format=torch.contiguous_format).float()
66
+ control_lst.append(control)
67
+ control = control_lst
68
+ else:
69
+ control = batch[self.control_key]
70
+ if bs is not None:
71
+ control = control[:bs]
72
+ control = control.to(self.device)
73
+ control = einops.rearrange(control, 'b h w c -> b c h w')
74
+ control = control.to(memory_format=torch.contiguous_format).float()
75
+ control = [control]
76
+ cond_dict = dict(c_crossattn=[c], c_concat=control)
77
+ if self.first_stage_key_cond is not None:
78
+ first_stage_cond = []
79
+ for key in self.first_stage_key_cond:
80
+ if not "mask" in key:
81
+ cond, _ = super().get_input(batch, key, *args, **kwargs)
82
+ else:
83
+ cond, _ = super().get_input(batch, key, no_latent=True, *args, **kwargs)
84
+ first_stage_cond.append(cond)
85
+ first_stage_cond = torch.cat(first_stage_cond, dim=1)
86
+ cond_dict["first_stage_cond"] = first_stage_cond
87
+ return x, cond_dict
88
+
89
+ def apply_model(self, x_noisy, t, cond, *args, **kwargs):
90
+ assert isinstance(cond, dict)
91
+
92
+ diffusion_model = self.model.diffusion_model
93
+ cond_txt = torch.cat(cond["c_crossattn"], 1)
94
+ if self.proj_out is not None:
95
+ if cond_txt.shape[-1] == 1024:
96
+ cond_txt = self.proj_out(cond_txt) # [BS x 1 x 768]
97
+ if self.always_learnable_param:
98
+ cond_txt = self.get_unconditional_conditioning(cond_txt.shape[0])
99
+
100
+ if cond['c_concat'] is None:
101
+ eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
102
+ else:
103
+ if "first_stage_cond" in cond:
104
+ x_noisy = torch.cat([x_noisy, cond["first_stage_cond"]], dim=1)
105
+ if not self.use_VAEDownsample:
106
+ hint = cond["c_concat"]
107
+ else:
108
+ hint = []
109
+ for h in cond["c_concat"]:
110
+ if h.shape[2] == self.img_H and h.shape[3] == self.img_W:
111
+ h = self.encode_first_stage(h)
112
+ h = self.get_first_stage_encoding(h).detach()
113
+ hint.append(h)
114
+ hint = torch.cat(hint, dim=1)
115
+ control, _ = self.control_model(x=x_noisy, hint=hint, timesteps=t, context=cond_txt, only_mid_control=self.only_mid_control)
116
+ if len(control) == len(self.control_scales):
117
+ control = [c * scale for c, scale in zip(control, self.control_scales)]
118
+
119
+ eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
120
+ return eps, None
121
+ @torch.no_grad()
122
+ def get_unconditional_conditioning(self, N):
123
+ if not self.kwargs["use_imageCLIP"]:
124
+ return self.get_learned_conditioning([""] * N)
125
+ else:
126
+ return self.learnable_vector.repeat(N,1,1)
127
+ def low_vram_shift(self, is_diffusing):
128
+ if is_diffusing:
129
+ self.model = self.model.cuda()
130
+ self.control_model = self.control_model.cuda()
131
+ self.first_stage_model = self.first_stage_model.cpu()
132
+ self.cond_stage_model = self.cond_stage_model.cpu()
133
+ else:
134
+ self.model = self.model.cpu()
135
+ self.control_model = self.control_model.cpu()
136
+ self.first_stage_model = self.first_stage_model.cuda()
137
+ self.cond_stage_model = self.cond_stage_model.cuda()
cldm/hack.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import einops
3
+
4
+ import ldm.modules.encoders.modules
5
+ import ldm.modules.attention
6
+
7
+ from transformers import logging
8
+ from ldm.modules.attention import default
9
+
10
+
11
+ def disable_verbosity():
12
+ logging.set_verbosity_error()
13
+ print('logging improved.')
14
+ return
15
+
16
+
17
+ def enable_sliced_attention():
18
+ ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
19
+ print('Enabled sliced_attention.')
20
+ return
21
+
22
+
23
+ def hack_everything(clip_skip=0):
24
+ disable_verbosity()
25
+ ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
26
+ ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
27
+ print('Enabled clip hacks.')
28
+ return
29
+
30
+
31
+ # Written by Lvmin
32
+ def _hacked_clip_forward(self, text):
33
+ PAD = self.tokenizer.pad_token_id
34
+ EOS = self.tokenizer.eos_token_id
35
+ BOS = self.tokenizer.bos_token_id
36
+
37
+ def tokenize(t):
38
+ return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
39
+
40
+ def transformer_encode(t):
41
+ if self.clip_skip > 1:
42
+ rt = self.transformer(input_ids=t, output_hidden_states=True)
43
+ return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
44
+ else:
45
+ return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
46
+
47
+ def split(x):
48
+ return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
49
+
50
+ def pad(x, p, i):
51
+ return x[:i] if len(x) >= i else x + [p] * (i - len(x))
52
+
53
+ raw_tokens_list = tokenize(text)
54
+ tokens_list = []
55
+
56
+ for raw_tokens in raw_tokens_list:
57
+ raw_tokens_123 = split(raw_tokens)
58
+ raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
59
+ raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
60
+ tokens_list.append(raw_tokens_123)
61
+
62
+ tokens_list = torch.IntTensor(tokens_list).to(self.device)
63
+
64
+ feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
65
+ y = transformer_encode(feed)
66
+ z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
67
+
68
+ return z
69
+
70
+
71
+ # Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
72
+ def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
73
+ h = self.heads
74
+
75
+ q = self.to_q(x)
76
+ context = default(context, x)
77
+ k = self.to_k(context)
78
+ v = self.to_v(context)
79
+ del context, x
80
+
81
+ q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
82
+
83
+ limit = k.shape[0]
84
+ att_step = 1
85
+ q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
86
+ k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
87
+ v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
88
+
89
+ q_chunks.reverse()
90
+ k_chunks.reverse()
91
+ v_chunks.reverse()
92
+ sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
93
+ del k, q, v
94
+ for i in range(0, limit, att_step):
95
+ q_buffer = q_chunks.pop()
96
+ k_buffer = k_chunks.pop()
97
+ v_buffer = v_chunks.pop()
98
+ sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
99
+
100
+ del k_buffer, q_buffer
101
+ # attention, what we cannot get enough of, by chunks
102
+
103
+ sim_buffer = sim_buffer.softmax(dim=-1)
104
+
105
+ sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
106
+ del v_buffer
107
+ sim[i:i + att_step, :, :] = sim_buffer
108
+
109
+ del sim_buffer
110
+ sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
111
+ return self.to_out(sim)
cldm/model.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from ldm.util import instantiate_from_config
2
+
3
+
4
+ def get_state_dict(d):
5
+ return d.get('state_dict', d)
6
+
7
+ def create_model(config, **kwargs):
8
+ model = instantiate_from_config(config.model).cpu()
9
+ return model
cldm/plms_hacked.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+
7
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
+ from ldm.models.diffusion.sampling_util import norm_thresholding
9
+
10
+
11
+ class PLMSSampler(object):
12
+ def __init__(self, model, schedule="linear", **kwargs):
13
+ super().__init__()
14
+ self.model = model
15
+ self.ddpm_num_timesteps = model.num_timesteps
16
+ self.schedule = schedule
17
+
18
+ def register_buffer(self, name, attr):
19
+ if type(attr) == torch.Tensor:
20
+ if attr.device != torch.device("cuda"):
21
+ attr = attr.to(torch.device("cuda"))
22
+ setattr(self, name, attr)
23
+
24
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
25
+ if ddim_eta != 0:
26
+ raise ValueError('ddim_eta must be 0 for PLMS')
27
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
28
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
29
+ alphas_cumprod = self.model.alphas_cumprod
30
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
31
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
32
+
33
+ self.register_buffer('betas', to_torch(self.model.betas))
34
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
35
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
36
+
37
+ # calculations for diffusion q(x_t | x_{t-1}) and others
38
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
39
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
40
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
41
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
42
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
43
+
44
+ # ddim sampling parameters
45
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
46
+ ddim_timesteps=self.ddim_timesteps,
47
+ eta=ddim_eta,verbose=verbose)
48
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
49
+ self.register_buffer('ddim_alphas', ddim_alphas)
50
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
51
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
52
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
53
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
54
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
55
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
56
+
57
+ @torch.no_grad()
58
+ def sample(self,
59
+ S,
60
+ batch_size,
61
+ shape,
62
+ conditioning=None,
63
+ callback=None,
64
+ img_callback=None,
65
+ quantize_x0=False,
66
+ eta=0.,
67
+ mask=None,
68
+ x0=None,
69
+ temperature=1.,
70
+ noise_dropout=0.,
71
+ score_corrector=None,
72
+ corrector_kwargs=None,
73
+ verbose=True,
74
+ x_T=None,
75
+ log_every_t=100,
76
+ unconditional_guidance_scale=5.,
77
+ unconditional_conditioning=None,
78
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
79
+ dynamic_threshold=None,
80
+ **kwargs
81
+ ):
82
+ if conditioning is not None:
83
+ if isinstance(conditioning, dict):
84
+ ctmp = conditioning[list(conditioning.keys())[0]]
85
+ while isinstance(ctmp, list): ctmp = ctmp[0]
86
+ cbs = ctmp.shape[0]
87
+ if cbs != batch_size:
88
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
89
+ else:
90
+ if conditioning.shape[0] != batch_size:
91
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
92
+
93
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
94
+ # sampling
95
+ C, H, W = shape
96
+ size = (batch_size, C, H, W)
97
+ print(f'Data shape for PLMS sampling is {size}')
98
+
99
+ samples, intermediates, cond_output_dict = self.plms_sampling(conditioning, size,
100
+ callback=callback,
101
+ img_callback=img_callback,
102
+ quantize_denoised=quantize_x0,
103
+ mask=mask, x0=x0,
104
+ ddim_use_original_steps=False,
105
+ noise_dropout=noise_dropout,
106
+ temperature=temperature,
107
+ score_corrector=score_corrector,
108
+ corrector_kwargs=corrector_kwargs,
109
+ x_T=x_T,
110
+ log_every_t=log_every_t,
111
+ unconditional_guidance_scale=unconditional_guidance_scale,
112
+ unconditional_conditioning=unconditional_conditioning,
113
+ dynamic_threshold=dynamic_threshold,
114
+ )
115
+ return samples, intermediates, cond_output_dict
116
+
117
+ @torch.no_grad()
118
+ def plms_sampling(self, cond, shape,
119
+ x_T=None, ddim_use_original_steps=False,
120
+ callback=None, timesteps=None, quantize_denoised=False,
121
+ mask=None, x0=None, img_callback=None, log_every_t=100,
122
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
123
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
124
+ dynamic_threshold=None):
125
+ device = self.model.betas.device
126
+ b = shape[0]
127
+ if x_T is None:
128
+ img = torch.randn(shape, device=device)
129
+ else:
130
+ img = x_T
131
+
132
+ if timesteps is None:
133
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
134
+ elif timesteps is not None and not ddim_use_original_steps:
135
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
136
+ timesteps = self.ddim_timesteps[:subset_end]
137
+
138
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
139
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
140
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
141
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
142
+
143
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
144
+ old_eps = []
145
+
146
+ for i, step in enumerate(iterator):
147
+ index = total_steps - i - 1
148
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
149
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
150
+
151
+ if mask is not None:
152
+ assert x0 is not None
153
+ if i < self.first_n_repaint:
154
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
155
+ img = img_orig * mask + (1. - mask) * img
156
+
157
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
158
+ quantize_denoised=quantize_denoised, temperature=temperature,
159
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
160
+ corrector_kwargs=corrector_kwargs,
161
+ unconditional_guidance_scale=unconditional_guidance_scale,
162
+ unconditional_conditioning=unconditional_conditioning,
163
+ old_eps=old_eps, t_next=ts_next,
164
+ dynamic_threshold=dynamic_threshold)
165
+ img, pred_x0, e_t = outs
166
+ old_eps.append(e_t)
167
+ if len(old_eps) >= 4:
168
+ old_eps.pop(0)
169
+ if callback: callback(i)
170
+ if img_callback: img_callback(pred_x0, i)
171
+
172
+ if index % log_every_t == 0 or index == total_steps - 1:
173
+ intermediates['x_inter'].append(img)
174
+ intermediates['pred_x0'].append(pred_x0)
175
+ return img, intermediates, None
176
+ def undo(self, x_t, t):
177
+ beta = extract_into_tensor(self.betas, t, x_t.shape)
178
+ x_t_forward = torch.sqrt(1 - beta) * x_t + torch.sqrt(beta) * torch.randn_like(x_t)
179
+ return x_t_forward
180
+
181
+ @torch.no_grad()
182
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
183
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
184
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
185
+ dynamic_threshold=None):
186
+ b, *_, device = *x.shape, x.device
187
+
188
+ def get_model_output(x, t):
189
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
190
+ e_t, _ = self.model.apply_model(x, t, c)
191
+ else:
192
+ model_t, _ = self.model.apply_model(x,t,c)
193
+ model_uncond, _ = self.model.apply_model(x,t,unconditional_conditioning)
194
+
195
+ if isinstance(model_t, tuple):
196
+ model_t, _ = model_t
197
+ if isinstance(model_uncond, tuple):
198
+ model_uncond, _ = model_uncond
199
+ e_t = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
200
+
201
+ if score_corrector is not None:
202
+ assert self.model.parameterization == "eps"
203
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
204
+
205
+ return e_t
206
+
207
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
208
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
209
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
210
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
211
+
212
+ def get_x_prev_and_pred_x0(e_t, index):
213
+ # select parameters corresponding to the currently considered timestep
214
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
215
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
216
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
217
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
218
+
219
+ # current prediction for x_0
220
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
221
+ if quantize_denoised:
222
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
223
+ if dynamic_threshold is not None:
224
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
225
+ # direction pointing to x_t
226
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
227
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
228
+ if noise_dropout > 0.:
229
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
230
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
231
+ return x_prev, pred_x0
232
+
233
+ e_t = get_model_output(x, t)
234
+ if len(old_eps) == 0:
235
+ # Pseudo Improved Euler (2nd order)
236
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
237
+ e_t_next = get_model_output(x_prev, t_next)
238
+ e_t_prime = (e_t + e_t_next) / 2
239
+ elif len(old_eps) == 1:
240
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
241
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
242
+ elif len(old_eps) == 2:
243
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
244
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
245
+ elif len(old_eps) >= 3:
246
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
247
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
248
+
249
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
250
+
251
+ return x_prev, pred_x0, e_t
cldm/warping_cldm_network.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch as th
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from ldm.modules.diffusionmodules.util import (
7
+ conv_nd,
8
+ linear,
9
+ zero_module,
10
+ timestep_embedding
11
+ )
12
+
13
+ from einops import rearrange
14
+ from ldm.modules.attention import SpatialTransformer
15
+ from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
16
+ from ldm.util import exists
17
+
18
+ class StableVITON(UNetModel):
19
+ def __init__(
20
+ self,
21
+ dim_head_denorm=1,
22
+ *args,
23
+ **kwargs,
24
+ ):
25
+ super().__init__(*args, **kwargs)
26
+ warp_flow_blks = []
27
+ warp_zero_convs = []
28
+
29
+ self.encode_output_chs = [
30
+ 320,
31
+ 320,
32
+ 640,
33
+ 640,
34
+ 640,
35
+ 1280,
36
+ 1280,
37
+ 1280,
38
+ 1280
39
+ ]
40
+
41
+ self.encode_output_chs2 = [
42
+ 320,
43
+ 320,
44
+ 320,
45
+ 320,
46
+ 640,
47
+ 640,
48
+ 640,
49
+ 1280,
50
+ 1280
51
+ ]
52
+
53
+
54
+ for in_ch, cont_ch in zip(self.encode_output_chs, self.encode_output_chs2):
55
+ dim_head = in_ch // self.num_heads
56
+ dim_head = dim_head // dim_head_denorm
57
+ warp_flow_blks.append(SpatialTransformer(
58
+ in_channels=in_ch,
59
+ n_heads=self.num_heads,
60
+ d_head=dim_head,
61
+ depth=self.transformer_depth,
62
+ context_dim=cont_ch,
63
+ use_linear=self.use_linear_in_transformer,
64
+ use_checkpoint=self.use_checkpoint,
65
+ ))
66
+ warp_zero_convs.append(self.make_zero_conv(in_ch))
67
+ self.warp_flow_blks = nn.ModuleList(reversed(warp_flow_blks))
68
+ self.warp_zero_convs = nn.ModuleList(reversed(warp_zero_convs))
69
+ def make_zero_conv(self, channels):
70
+ return zero_module(conv_nd(2, channels, channels, 1, padding=0))
71
+ def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
72
+ hs = []
73
+
74
+ with torch.no_grad():
75
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
76
+ emb = self.time_embed(t_emb)
77
+ h = x.type(self.dtype)
78
+ for module in self.input_blocks:
79
+ h = module(h, emb, context)
80
+ hs.append(h)
81
+ h = self.middle_block(h, emb, context)
82
+
83
+ if control is not None:
84
+ hint = control.pop()
85
+
86
+ for module in self.output_blocks[:3]:
87
+ control.pop()
88
+ h = torch.cat([h, hs.pop()], dim=1)
89
+ h = module(h, emb, context)
90
+
91
+ n_warp = len(self.encode_output_chs)
92
+ for i, (module, warp_blk, warp_zc) in enumerate(zip(self.output_blocks[3:n_warp+3], self.warp_flow_blks, self.warp_zero_convs)):
93
+ if control is None or (h.shape[-2] == 8 and h.shape[-1] == 6):
94
+ assert 0, f"shape is wrong : {h.shape}"
95
+ else:
96
+ hint = control.pop()
97
+ h = self.warp(h, hint, warp_blk, warp_zc)
98
+ h = torch.cat([h, hs.pop()], dim=1)
99
+ h = module(h, emb, context)
100
+ for module in self.output_blocks[n_warp+3:]:
101
+ if control is None:
102
+ h = torch.cat([h, hs.pop()], dim=1)
103
+ else:
104
+ h = torch.cat([h, hs.pop()], dim=1)
105
+ h = module(h, emb, context)
106
+ h = h.type(x.dtype)
107
+ return self.out(h)
108
+ def warp(self, x, hint, crossattn_layer, zero_conv, mask1=None, mask2=None):
109
+ hint = rearrange(hint, "b c h w -> b (h w) c").contiguous()
110
+ output = crossattn_layer(x, hint)
111
+ output = zero_conv(output)
112
+ return output + x
113
+ class NoZeroConvControlNet(nn.Module):
114
+ def __init__(
115
+ self,
116
+ image_size,
117
+ in_channels,
118
+ model_channels,
119
+ hint_channels,
120
+ num_res_blocks,
121
+ attention_resolutions,
122
+ dropout=0,
123
+ channel_mult=(1, 2, 4, 8),
124
+ conv_resample=True,
125
+ dims=2,
126
+ use_checkpoint=False,
127
+ use_fp16=False,
128
+ num_heads=-1,
129
+ num_head_channels=-1,
130
+ num_heads_upsample=-1,
131
+ use_scale_shift_norm=False,
132
+ resblock_updown=False,
133
+ use_new_attention_order=False,
134
+ use_spatial_transformer=False, # custom transformer support
135
+ transformer_depth=1, # custom transformer support
136
+ context_dim=None, # custom transformer support
137
+ n_embed=None,
138
+ legacy=True,
139
+ disable_self_attentions=None,
140
+ num_attention_blocks=None,
141
+ disable_middle_self_attn=False,
142
+ use_linear_in_transformer=False,
143
+ use_VAEdownsample=False,
144
+ cond_first_ch=8,
145
+ ):
146
+ super().__init__()
147
+ if use_spatial_transformer:
148
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
149
+
150
+ if context_dim is not None:
151
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
152
+ from omegaconf.listconfig import ListConfig
153
+ if type(context_dim) == ListConfig:
154
+ context_dim = list(context_dim)
155
+
156
+ if num_heads_upsample == -1:
157
+ num_heads_upsample = num_heads
158
+
159
+ if num_heads == -1:
160
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
161
+
162
+ if num_head_channels == -1:
163
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
164
+
165
+ self.dims = dims
166
+ self.image_size = image_size
167
+ self.in_channels = in_channels
168
+ self.model_channels = model_channels
169
+ if isinstance(num_res_blocks, int):
170
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
171
+ else:
172
+ if len(num_res_blocks) != len(channel_mult):
173
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
174
+ "as a list/tuple (per-level) with the same length as channel_mult")
175
+ self.num_res_blocks = num_res_blocks
176
+ if disable_self_attentions is not None:
177
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
178
+ assert len(disable_self_attentions) == len(channel_mult)
179
+ if num_attention_blocks is not None:
180
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
181
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
182
+ print(f"Constructor of UNetModel received um_attention_blocks={num_attention_blocks}. "
183
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
184
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
185
+ f"attention will still not be set.")
186
+
187
+ self.attention_resolutions = attention_resolutions
188
+ self.dropout = dropout
189
+ self.channel_mult = channel_mult
190
+ self.conv_resample = conv_resample
191
+ self.use_checkpoint = use_checkpoint
192
+ self.dtype = th.float16 if use_fp16 else th.float32
193
+ self.num_heads = num_heads
194
+ self.num_head_channels = num_head_channels
195
+ self.num_heads_upsample = num_heads_upsample
196
+ self.predict_codebook_ids = n_embed is not None
197
+ self.use_VAEdownsample = use_VAEdownsample
198
+
199
+ time_embed_dim = model_channels * 4
200
+ self.time_embed = nn.Sequential(
201
+ linear(model_channels, time_embed_dim),
202
+ nn.SiLU(),
203
+ linear(time_embed_dim, time_embed_dim),
204
+ )
205
+
206
+ self.input_blocks = nn.ModuleList(
207
+ [
208
+ TimestepEmbedSequential(
209
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
210
+ )
211
+ ]
212
+ )
213
+
214
+ self.cond_first_block = TimestepEmbedSequential(
215
+ zero_module(conv_nd(dims, cond_first_ch, model_channels, 3, padding=1))
216
+ )
217
+
218
+
219
+ self._feature_size = model_channels
220
+ input_block_chans = [model_channels]
221
+ ch = model_channels
222
+ ds = 1
223
+ for level, mult in enumerate(channel_mult):
224
+ for nr in range(self.num_res_blocks[level]):
225
+ layers = [
226
+ ResBlock(
227
+ ch,
228
+ time_embed_dim,
229
+ dropout,
230
+ out_channels=mult * model_channels,
231
+ dims=dims,
232
+ use_checkpoint=use_checkpoint,
233
+ use_scale_shift_norm=use_scale_shift_norm,
234
+ )
235
+ ]
236
+ ch = mult * model_channels
237
+ if ds in attention_resolutions:
238
+ if num_head_channels == -1:
239
+ dim_head = ch // num_heads
240
+ else:
241
+ num_heads = ch // num_head_channels
242
+ dim_head = num_head_channels
243
+ if legacy:
244
+ # num_heads = 1
245
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
246
+ if exists(disable_self_attentions):
247
+ disabled_sa = disable_self_attentions[level]
248
+ else:
249
+ disabled_sa = False
250
+
251
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
252
+ layers.append(
253
+ AttentionBlock(
254
+ ch,
255
+ use_checkpoint=use_checkpoint,
256
+ num_heads=num_heads,
257
+ num_head_channels=dim_head,
258
+ use_new_attention_order=use_new_attention_order,
259
+ ) if not use_spatial_transformer else SpatialTransformer(
260
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
261
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
262
+ use_checkpoint=use_checkpoint
263
+ )
264
+ )
265
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
266
+ self._feature_size += ch
267
+ input_block_chans.append(ch)
268
+ if level != len(channel_mult) - 1:
269
+ out_ch = ch
270
+ self.input_blocks.append(
271
+ TimestepEmbedSequential(
272
+ ResBlock(
273
+ ch,
274
+ time_embed_dim,
275
+ dropout,
276
+ out_channels=out_ch,
277
+ dims=dims,
278
+ use_checkpoint=use_checkpoint,
279
+ use_scale_shift_norm=use_scale_shift_norm,
280
+ down=True,
281
+ )
282
+ if resblock_updown
283
+ else Downsample(
284
+ ch, conv_resample, dims=dims, out_channels=out_ch
285
+ )
286
+ )
287
+ )
288
+ ch = out_ch
289
+ input_block_chans.append(ch)
290
+ ds *= 2
291
+ self._feature_size += ch
292
+
293
+ if num_head_channels == -1:
294
+ dim_head = ch // num_heads
295
+ else:
296
+ num_heads = ch // num_head_channels
297
+ dim_head = num_head_channels
298
+ if legacy:
299
+ # num_heads = 1
300
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
301
+ self.middle_block = TimestepEmbedSequential(
302
+ ResBlock(
303
+ ch,
304
+ time_embed_dim,
305
+ dropout,
306
+ dims=dims,
307
+ use_checkpoint=use_checkpoint,
308
+ use_scale_shift_norm=use_scale_shift_norm,
309
+ ),
310
+ AttentionBlock(
311
+ ch,
312
+ use_checkpoint=use_checkpoint,
313
+ num_heads=num_heads,
314
+ num_head_channels=dim_head,
315
+ use_new_attention_order=use_new_attention_order,
316
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
317
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
318
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
319
+ use_checkpoint=use_checkpoint
320
+ ),
321
+ ResBlock(
322
+ ch,
323
+ time_embed_dim,
324
+ dropout,
325
+ dims=dims,
326
+ use_checkpoint=use_checkpoint,
327
+ use_scale_shift_norm=use_scale_shift_norm,
328
+ ),
329
+ )
330
+ self._feature_size += ch
331
+
332
+ def forward(self, x, hint, timesteps, context, only_mid_control=False, **kwargs):
333
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
334
+ emb = self.time_embed(t_emb)
335
+
336
+ if not self.use_VAEdownsample:
337
+ guided_hint = self.input_hint_block(hint, emb, context)
338
+ else:
339
+ guided_hint = self.cond_first_block(hint, emb, context)
340
+
341
+ outs = []
342
+ hs = []
343
+ h = x.type(self.dtype)
344
+ for module in self.input_blocks:
345
+ if guided_hint is not None:
346
+ h = module(h, emb, context)
347
+ h += guided_hint
348
+ hs.append(h)
349
+ guided_hint = None
350
+ else:
351
+ h = module(h, emb, context)
352
+ hs.append(h)
353
+ outs.append(h)
354
+
355
+ h = self.middle_block(h, emb, context)
356
+ outs.append(h)
357
+ return outs, None
comyui_dataset.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os.path import join as opj
2
+
3
+ import cv2
4
+ import numpy as np
5
+ from torch.utils.data import Dataset
6
+
7
+ class Comfyui_Dataset(Dataset):
8
+ def __init__(
9
+ self,
10
+
11
+ img_fn,
12
+ cloth_fn,
13
+ agn,
14
+ agn_mask,
15
+ cloth,
16
+ image,
17
+ image_densepose,
18
+
19
+ **kwargs
20
+ ):
21
+ self.img_fn = img_fn
22
+ self.cloth_fn = cloth_fn
23
+ self.agn = agn
24
+ self.agn_mask = agn_mask
25
+ self.cloth = cloth
26
+ self.image = image
27
+ self.image_densepose = image_densepose
28
+
29
+ def __len__(self):
30
+ return 1
31
+
32
+ def __getitem__(self, idx):
33
+ return dict(
34
+ agn=self.agn,
35
+ agn_mask=self.agn_mask,
36
+ cloth=self.cloth,
37
+ image=self.image,
38
+ image_densepose=self.image_densepose,
39
+ txt="",
40
+ img_fn=self.img_fn,
41
+ cloth_fn=self.cloth_fn,
42
+ )
configs/VITON512.yaml ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: cldm.cldm.ControlLDM
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.0120
6
+ num_timesteps_cond: 1
7
+ log_every_t: 200
8
+ timesteps: 1000
9
+ first_stage_key: "image"
10
+ first_stage_key_cond: ["agn", "agn_mask", "image_densepose"]
11
+ cond_stage_key: "cloth"
12
+ control_key: "cloth"
13
+ image_size: 64
14
+ channels: 4
15
+ cond_stage_trainable: False
16
+ conditioning_key: crossattn
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.18215
19
+ use_ema: False
20
+ only_mid_control: False
21
+ use_VAEdownsample: True
22
+ use_lastzc: True
23
+ use_imageCLIP: True
24
+ use_pbe_weight: True
25
+ u_cond_percent: 0.2
26
+ use_attn_mask: False
27
+
28
+ control_stage_config:
29
+ target: cldm.warping_cldm_network.NoZeroConvControlNet
30
+ params:
31
+ image_size: 32
32
+ in_channels: 13
33
+ hint_channels: 3
34
+ model_channels: 320
35
+ attention_resolutions: [4, 2, 1]
36
+ num_res_blocks: 2
37
+ channel_mult: [1, 2, 4, 4]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+ cond_first_ch: 4
45
+
46
+ unet_config:
47
+ target: cldm.warping_cldm_network.StableVITON
48
+ params:
49
+ image_size: 32
50
+ in_channels: 13
51
+ out_channels: 4
52
+ model_channels: 320
53
+ attention_resolutions: [4, 2, 1]
54
+ num_res_blocks: 2
55
+ channel_mult: [1, 2, 4, 4]
56
+ num_heads: 8
57
+ use_spatial_transformer: True
58
+ transformer_depth: 1
59
+ context_dim: 768
60
+ use_checkpoint: True
61
+ legacy: False
62
+ dim_head_denorm: 1
63
+
64
+ first_stage_config:
65
+ target: ldm.models.autoencoder.AutoencoderKL
66
+ params:
67
+ embed_dim: 4
68
+ monitor: val/rec_loss
69
+ ddconfig:
70
+ double_z: true
71
+ z_channels: 4
72
+ resolution: 256
73
+ in_channels: 3
74
+ out_ch: 3
75
+ ch: 128
76
+ ch_mult:
77
+ - 1
78
+ - 2
79
+ - 4
80
+ - 4
81
+ num_res_blocks: 2
82
+ attn_resolutions: []
83
+ dropout: 0.0
84
+ lossconfig:
85
+ target: torch.nn.Identity
86
+ validation_config:
87
+ ddim_steps: 50
88
+ eta: 0.0
89
+ scale: 1.0
90
+
91
+ cond_stage_config:
92
+ target: ldm.modules.image_encoders.modules.FrozenCLIPImageEmbedder
93
+ dataset_name: VITONHDDataset
94
+ default_prompt: ""
95
+ log_images_kwargs:
96
+ unconditional_guidance_scale: 5.0
configs/VITON512_COMFYUI.yaml ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: cldm.cldm.ControlLDM
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.0120
6
+ num_timesteps_cond: 1
7
+ log_every_t: 200
8
+ timesteps: 1000
9
+ first_stage_key: "image"
10
+ first_stage_key_cond: ["agn", "agn_mask", "image_densepose"]
11
+ cond_stage_key: "cloth"
12
+ control_key: "cloth"
13
+ image_size: 64
14
+ channels: 4
15
+ cond_stage_trainable: False
16
+ conditioning_key: crossattn
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.18215
19
+ use_ema: False
20
+ only_mid_control: False
21
+ use_VAEdownsample: True
22
+ use_lastzc: True
23
+ use_imageCLIP: True
24
+ use_pbe_weight: True
25
+ u_cond_percent: 0.2
26
+ use_attn_mask: False
27
+
28
+ control_stage_config:
29
+ target: cldm.warping_cldm_network.NoZeroConvControlNet
30
+ params:
31
+ image_size: 32
32
+ in_channels: 13
33
+ hint_channels: 3
34
+ model_channels: 320
35
+ attention_resolutions: [4, 2, 1]
36
+ num_res_blocks: 2
37
+ channel_mult: [1, 2, 4, 4]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+ cond_first_ch: 4
45
+
46
+ unet_config:
47
+ target: cldm.warping_cldm_network.StableVITON
48
+ params:
49
+ image_size: 32
50
+ in_channels: 13
51
+ out_channels: 4
52
+ model_channels: 320
53
+ attention_resolutions: [4, 2, 1]
54
+ num_res_blocks: 2
55
+ channel_mult: [1, 2, 4, 4]
56
+ num_heads: 8
57
+ use_spatial_transformer: True
58
+ transformer_depth: 1
59
+ context_dim: 768
60
+ use_checkpoint: True
61
+ legacy: False
62
+ dim_head_denorm: 1
63
+
64
+ first_stage_config:
65
+ target: ldm.models.autoencoder.AutoencoderKL
66
+ params:
67
+ embed_dim: 4
68
+ monitor: val/rec_loss
69
+ ddconfig:
70
+ double_z: true
71
+ z_channels: 4
72
+ resolution: 256
73
+ in_channels: 3
74
+ out_ch: 3
75
+ ch: 128
76
+ ch_mult:
77
+ - 1
78
+ - 2
79
+ - 4
80
+ - 4
81
+ num_res_blocks: 2
82
+ attn_resolutions: []
83
+ dropout: 0.0
84
+ lossconfig:
85
+ target: torch.nn.Identity
86
+ validation_config:
87
+ ddim_steps: 50
88
+ eta: 0.0
89
+ scale: 1.0
90
+
91
+ cond_stage_config:
92
+ target: ldm.modules.image_encoders.modules.FrozenCLIPImageEmbedder
93
+ dataset_name: Comfyui_Dataset
94
+ default_prompt: ""
95
+ log_images_kwargs:
96
+ unconditional_guidance_scale: 5.0
ldm/__init__.py ADDED
File without changes
ldm/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (239 Bytes). View file
 
ldm/__pycache__/util.cpython-310.pyc ADDED
Binary file (7.63 kB). View file
 
ldm/__pycache__/util.cpython-311.pyc ADDED
Binary file (15.1 kB). View file
 
ldm/data/__init__.py ADDED
File without changes
ldm/data/util.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ldm.modules.midas.api import load_midas_transform
4
+
5
+
6
+ class AddMiDaS(object):
7
+ def __init__(self, model_type):
8
+ super().__init__()
9
+ self.transform = load_midas_transform(model_type)
10
+
11
+ def pt2np(self, x):
12
+ x = ((x + 1.0) * .5).detach().cpu().numpy()
13
+ return x
14
+
15
+ def np2pt(self, x):
16
+ x = torch.from_numpy(x) * 2 - 1.
17
+ return x
18
+
19
+ def __call__(self, sample):
20
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
21
+ x = self.pt2np(sample['jpg'])
22
+ x = self.transform({"image": x})["image"]
23
+ sample['midas_in'] = x
24
+ return sample
ldm/models/__pycache__/autoencoder.cpython-310.pyc ADDED
Binary file (7.49 kB). View file
 
ldm/models/__pycache__/autoencoder.cpython-311.pyc ADDED
Binary file (14.3 kB). View file
 
ldm/models/autoencoder.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ import torch.nn.functional as F
4
+ from contextlib import contextmanager
5
+
6
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
7
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
8
+
9
+ from ldm.util import instantiate_from_config
10
+ from ldm.modules.ema import LitEma
11
+
12
+
13
+ class AutoencoderKL(pl.LightningModule):
14
+ def __init__(self,
15
+ ddconfig,
16
+ lossconfig,
17
+ embed_dim,
18
+ ckpt_path=None,
19
+ ignore_keys=[],
20
+ image_key="image",
21
+ colorize_nlabels=None,
22
+ monitor=None,
23
+ ema_decay=None,
24
+ learn_logvar=False
25
+ ):
26
+ super().__init__()
27
+ self.lossconfig = lossconfig
28
+ self.learn_logvar = learn_logvar
29
+ self.image_key = image_key
30
+ self.encoder = Encoder(**ddconfig)
31
+ self.decoder = Decoder(**ddconfig)
32
+ self.loss = torch.nn.Identity()
33
+ assert ddconfig["double_z"]
34
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
35
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
36
+ self.embed_dim = embed_dim
37
+ if colorize_nlabels is not None:
38
+ assert type(colorize_nlabels)==int
39
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
40
+ if monitor is not None:
41
+ self.monitor = monitor
42
+
43
+ self.use_ema = ema_decay is not None
44
+ if self.use_ema:
45
+ self.ema_decay = ema_decay
46
+ assert 0. < ema_decay < 1.
47
+ self.model_ema = LitEma(self, decay=ema_decay)
48
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
49
+
50
+ if ckpt_path is not None:
51
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
52
+ def init_loss(self):
53
+ self.loss = instantiate_from_config(self.lossconfig)
54
+ def init_from_ckpt(self, path, ignore_keys=list()):
55
+ sd = torch.load(path, map_location="cpu")["state_dict"]
56
+ keys = list(sd.keys())
57
+ for k in keys:
58
+ for ik in ignore_keys:
59
+ if k.startswith(ik):
60
+ print("Deleting key {} from state_dict.".format(k))
61
+ del sd[k]
62
+ self.load_state_dict(sd, strict=False)
63
+ print(f"Restored from {path}")
64
+
65
+ @contextmanager
66
+ def ema_scope(self, context=None):
67
+ if self.use_ema:
68
+ self.model_ema.store(self.parameters())
69
+ self.model_ema.copy_to(self)
70
+ if context is not None:
71
+ print(f"{context}: Switched to EMA weights")
72
+ try:
73
+ yield None
74
+ finally:
75
+ if self.use_ema:
76
+ self.model_ema.restore(self.parameters())
77
+ if context is not None:
78
+ print(f"{context}: Restored training weights")
79
+
80
+ def on_train_batch_end(self, *args, **kwargs):
81
+ if self.use_ema:
82
+ self.model_ema(self)
83
+
84
+ def encode(self, x):
85
+ h = self.encoder(x)
86
+ moments = self.quant_conv(h)
87
+ posterior = DiagonalGaussianDistribution(moments)
88
+ return posterior
89
+
90
+ def decode(self, z):
91
+ z = self.post_quant_conv(z)
92
+ dec = self.decoder(z)
93
+ return dec
94
+
95
+ def forward(self, input, sample_posterior=True):
96
+ posterior = self.encode(input)
97
+ if sample_posterior:
98
+ z = posterior.sample()
99
+ else:
100
+ z = posterior.mode()
101
+ dec = self.decode(z)
102
+ return dec, posterior
103
+
104
+ def get_input(self, batch, k):
105
+ x = batch[k]
106
+ if len(x.shape) == 3:
107
+ x = x[..., None]
108
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
109
+ return x
110
+
111
+ def training_step(self, batch, batch_idx):
112
+ real_img = self.get_input(batch, self.image_key)
113
+ recon, posterior = self(real_img)
114
+ loss = self.loss(real_img, recon, posterior)
115
+ return loss
116
+
117
+ def validation_step(self, batch, batch_idx):
118
+ log_dict = self._validation_step(batch, batch_idx)
119
+ with self.ema_scope():
120
+ log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
121
+ return log_dict
122
+
123
+ def _validation_step(self, batch, batch_idx, postfix=""):
124
+ inputs = self.get_input(batch, self.image_key)
125
+ reconstructions, posterior = self(inputs)
126
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
127
+ last_layer=self.get_last_layer(), split="val"+postfix)
128
+
129
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
130
+ last_layer=self.get_last_layer(), split="val"+postfix)
131
+
132
+ self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
133
+ self.log_dict(log_dict_ae)
134
+ self.log_dict(log_dict_disc)
135
+ return self.log_dict
136
+ def configure_optimizers(self):
137
+ lr = self.learning_rate
138
+ ae_params_list = list(self.decoder.parameters())
139
+ if self.learn_logvar:
140
+ print(f"{self.__class__.__name__}: Learning logvar")
141
+ ae_params_list.append(self.loss.logvar)
142
+ opt_ae = torch.optim.Adam(ae_params_list,
143
+ lr=lr, betas=(0.5, 0.9))
144
+ return [opt_ae], []
145
+
146
+ def get_last_layer(self):
147
+ return self.decoder.conv_out.weight
148
+
149
+ @torch.no_grad()
150
+ def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
151
+ log = dict()
152
+ x = self.get_input(batch, self.image_key)
153
+ x = x.to(self.device)
154
+ if not only_inputs:
155
+ xrec, posterior = self(x)
156
+ if x.shape[1] > 3:
157
+ # colorize with random projection
158
+ assert xrec.shape[1] > 3
159
+ x = self.to_rgb(x)
160
+ xrec = self.to_rgb(xrec)
161
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
162
+ log["reconstructions"] = xrec
163
+ if log_ema or self.use_ema:
164
+ with self.ema_scope():
165
+ xrec_ema, posterior_ema = self(x)
166
+ if x.shape[1] > 3:
167
+ # colorize with random projection
168
+ assert xrec_ema.shape[1] > 3
169
+ xrec_ema = self.to_rgb(xrec_ema)
170
+ log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
171
+ log["reconstructions_ema"] = xrec_ema
172
+ log["inputs"] = x
173
+ return log
174
+
175
+ def to_rgb(self, x):
176
+ assert self.image_key == "segmentation"
177
+ if not hasattr(self, "colorize"):
178
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
179
+ x = F.conv2d(x, weight=self.colorize)
180
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
181
+ return x
182
+
183
+
184
+ class IdentityFirstStage(torch.nn.Module):
185
+ def __init__(self, *args, vq_interface=False, **kwargs):
186
+ self.vq_interface = vq_interface
187
+ super().__init__()
188
+
189
+ def encode(self, x, *args, **kwargs):
190
+ return x
191
+
192
+ def decode(self, x, *args, **kwargs):
193
+ return x
194
+
195
+ def quantize(self, x, *args, **kwargs):
196
+ if self.vq_interface:
197
+ return x, None, [None, None, None]
198
+ return x
199
+
200
+ def forward(self, x, *args, **kwargs):
201
+ return x
202
+
ldm/models/diffusion/__init__.py ADDED
File without changes
ldm/models/diffusion/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (150 Bytes). View file
 
ldm/models/diffusion/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (256 Bytes). View file
 
ldm/models/diffusion/__pycache__/ddim.cpython-310.pyc ADDED
Binary file (9.68 kB). View file
 
ldm/models/diffusion/__pycache__/ddim.cpython-311.pyc ADDED
Binary file (20.4 kB). View file
 
ldm/models/diffusion/__pycache__/ddpm.cpython-310.pyc ADDED
Binary file (55 kB). View file
 
ldm/models/diffusion/__pycache__/ddpm.cpython-311.pyc ADDED
Binary file (116 kB). View file
 
ldm/models/diffusion/__pycache__/sampling_util.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
ldm/models/diffusion/__pycache__/sampling_util.cpython-311.pyc ADDED
Binary file (1.86 kB). View file
 
ldm/models/diffusion/ddim.py ADDED
@@ -0,0 +1,377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+
7
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
+
9
+
10
+ class DDIMSampler(object):
11
+ def __init__(self, model, schedule="linear", **kwargs):
12
+ super().__init__()
13
+ self.model = model
14
+ self.ddpm_num_timesteps = model.num_timesteps
15
+ self.schedule = schedule
16
+
17
+ def register_buffer(self, name, attr):
18
+ if type(attr) == torch.Tensor:
19
+ if attr.device != torch.device("cuda"):
20
+ attr = attr.to(torch.device("cuda"))
21
+ setattr(self, name, attr)
22
+
23
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
24
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
25
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
26
+ alphas_cumprod = self.model.alphas_cumprod
27
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
28
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
29
+
30
+ self.register_buffer('betas', to_torch(self.model.betas))
31
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
32
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
33
+
34
+ # calculations for diffusion q(x_t | x_{t-1}) and others
35
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
36
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
37
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
38
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
39
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
40
+
41
+ # ddim sampling parameters
42
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
43
+ ddim_timesteps=self.ddim_timesteps,
44
+ eta=ddim_eta,verbose=verbose)
45
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
46
+ self.register_buffer('ddim_alphas', ddim_alphas)
47
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
48
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
49
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
50
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
51
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
52
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
53
+
54
+ @torch.no_grad()
55
+ def sample(self,
56
+ S,
57
+ batch_size,
58
+ shape,
59
+ conditioning=None,
60
+ callback=None,
61
+ normals_sequence=None,
62
+ img_callback=None,
63
+ quantize_x0=False,
64
+ eta=0.,
65
+ mask=None,
66
+ x0=None,
67
+ temperature=1.,
68
+ noise_dropout=0.,
69
+ score_corrector=None,
70
+ corrector_kwargs=None,
71
+ verbose=True,
72
+ x_T=None,
73
+ log_every_t=100,
74
+ unconditional_guidance_scale=1.,
75
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
76
+ dynamic_threshold=None,
77
+ ucg_schedule=None,
78
+ **kwargs
79
+ ):
80
+ if conditioning is not None:
81
+ if isinstance(conditioning, dict):
82
+ ctmp = conditioning[list(conditioning.keys())[0]]
83
+ while isinstance(ctmp, list): ctmp = ctmp[0]
84
+ cbs = ctmp.shape[0]
85
+ if cbs != batch_size:
86
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87
+
88
+ elif isinstance(conditioning, list):
89
+ for ctmp in conditioning:
90
+ if ctmp.shape[0] != batch_size:
91
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
92
+
93
+ else:
94
+ if conditioning.shape[0] != batch_size:
95
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
96
+
97
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
98
+ # sampling
99
+ C, H, W = shape
100
+ size = (batch_size, C, H, W)
101
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
102
+
103
+ samples, intermediates, cond_output_dict = self.ddim_sampling(conditioning, size,
104
+ callback=callback,
105
+ img_callback=img_callback,
106
+ quantize_denoised=quantize_x0,
107
+ mask=mask, x0=x0,
108
+ ddim_use_original_steps=False,
109
+ noise_dropout=noise_dropout,
110
+ temperature=temperature,
111
+ score_corrector=score_corrector,
112
+ corrector_kwargs=corrector_kwargs,
113
+ x_T=x_T,
114
+ log_every_t=log_every_t,
115
+ unconditional_guidance_scale=unconditional_guidance_scale,
116
+ unconditional_conditioning=unconditional_conditioning,
117
+ dynamic_threshold=dynamic_threshold,
118
+ ucg_schedule=ucg_schedule
119
+ )
120
+ return samples, intermediates, cond_output_dict
121
+
122
+ @torch.no_grad()
123
+ def ddim_sampling(self, cond, shape,
124
+ x_T=None, ddim_use_original_steps=False,
125
+ callback=None, timesteps=None, quantize_denoised=False,
126
+ mask=None, x0=None, img_callback=None, log_every_t=100,
127
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
128
+ unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
129
+ ucg_schedule=None):
130
+ device = self.model.betas.device
131
+ b = shape[0]
132
+ if x_T is None:
133
+ img = torch.randn(shape, device=device)
134
+ else:
135
+ img = x_T
136
+
137
+ if timesteps is None:
138
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
139
+ elif timesteps is not None and not ddim_use_original_steps:
140
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
141
+ timesteps = self.ddim_timesteps[:subset_end]
142
+
143
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
144
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
145
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
146
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
147
+
148
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
149
+
150
+ for i, step in enumerate(iterator):
151
+ index = total_steps - i - 1
152
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
153
+
154
+ if mask is not None:
155
+ assert x0 is not None
156
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
157
+ img = img_orig * mask + (1. - mask) * img
158
+
159
+ if ucg_schedule is not None:
160
+ assert len(ucg_schedule) == len(time_range)
161
+ unconditional_guidance_scale = ucg_schedule[i]
162
+
163
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
164
+ quantize_denoised=quantize_denoised, temperature=temperature,
165
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
166
+ corrector_kwargs=corrector_kwargs,
167
+ unconditional_guidance_scale=unconditional_guidance_scale,
168
+ unconditional_conditioning=unconditional_conditioning,
169
+ dynamic_threshold=dynamic_threshold)
170
+ img, pred_x0, cond_output_dict = outs
171
+ if callback: callback(i)
172
+ if img_callback: img_callback(pred_x0, i)
173
+
174
+ if index % log_every_t == 0 or index == total_steps - 1:
175
+ intermediates['x_inter'].append(img)
176
+ intermediates['pred_x0'].append(pred_x0)
177
+
178
+ if cond_output_dict is not None:
179
+ cond_output = cond_output_dict["cond_output"]
180
+ if self.model.use_noisy_cond:
181
+ b = cond_output.shape[0]
182
+
183
+ alphas = self.model.alphas_cumprod if ddim_use_original_steps else self.ddim_alphas
184
+ alphas_prev = self.model.alphas_cumprod_prev if ddim_use_original_steps else self.ddim_alphas_prev
185
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if ddim_use_original_steps else self.ddim_sqrt_one_minus_alphas
186
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if ddim_use_original_steps else self.ddim_sigmas
187
+
188
+ device = cond_output.device
189
+ a_t = torch.full((b, 1, 1, 1), alphas[0], device=device)
190
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[0], device=device)
191
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[0], device=device)
192
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[0], device=device)
193
+
194
+ c = cond_output_dict["cond_input"]
195
+ e_t = cond_output
196
+ pred_c0 = (c - sqrt_one_minus_at * e_t) / a_t.sqrt()
197
+ dir_ct = (1. - a_prev - sigma_t**2).sqrt() * e_t
198
+ noise = sigma_t * noise_like(c.shape, device, False) * temperature
199
+
200
+ if noise_dropout > 0.:
201
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
202
+ cond_output = a_prev.sqrt() * pred_c0 + dir_ct + noise
203
+ cond_output_dict[f"cond_sample"] = cond_output
204
+ return img, intermediates, cond_output_dict
205
+
206
+ @torch.no_grad()
207
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
208
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
209
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
210
+ dynamic_threshold=None):
211
+ b, *_, device = *x.shape, x.device
212
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
213
+ model_output, cond_output_dict = self.model.apply_model(x, t, c)
214
+ else:
215
+ # x_in = torch.cat([x] * 2)
216
+ # t_in = torch.cat([t] * 2)
217
+ # if isinstance(c, dict):
218
+ # assert isinstance(unconditional_conditioning, dict)
219
+ # c_in = dict()
220
+ # for k in c:
221
+ # if isinstance(c[k], list):
222
+ # c_in[k] = [torch.cat([
223
+ # unconditional_conditioning[k][i],
224
+ # c[k][i]]) for i in range(len(c[k]))]
225
+ # else:
226
+ # c_in[k] = torch.cat([
227
+ # unconditional_conditioning[k],
228
+ # c[k]])
229
+ # elif isinstance(c, list):
230
+ # c_in = list()
231
+ # assert isinstance(unconditional_conditioning, list)
232
+ # for i in range(len(c)):
233
+ # c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
234
+ # else:
235
+ # c_in = torch.cat([unconditional_conditioning, c])
236
+ x_in = x
237
+ t_in = t
238
+ model_t, cond_output_dict_cond = self.model.apply_model(x_in, t_in, c)
239
+ model_uncond, cond_output_dict_uncond = self.model.apply_model(x_in, t_in, unconditional_conditioning)
240
+ if isinstance(model_t, tuple):
241
+ model_t, _ = model_t
242
+ if isinstance(model_uncond, tuple):
243
+ model_uncond, _ = model_uncond
244
+ if cond_output_dict_cond is not None:
245
+ cond_output_dict = dict()
246
+ for k in cond_output_dict_cond.keys():
247
+ cond_output_dict[k] = torch.cat([cond_output_dict_uncond[k], cond_output_dict_cond[k]])
248
+ else:
249
+ cond_output_dict = None
250
+ # model_output, cond_output_dict = self.model.apply_model(x_in, t_in, c_in)
251
+ # model_uncond, model_t = model_output.chunk(2)
252
+ model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
253
+
254
+ if self.model.parameterization == "v":
255
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
256
+ else:
257
+ e_t = model_output
258
+
259
+ if score_corrector is not None:
260
+ assert self.model.parameterization == "eps", 'not implemented'
261
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
262
+
263
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
264
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
265
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
266
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
267
+ # select parameters corresponding to the currently considered timestep
268
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
269
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
270
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
271
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
272
+
273
+ # current prediction for x_0
274
+ if self.model.parameterization != "v":
275
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
276
+ else:
277
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
278
+
279
+ if quantize_denoised:
280
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
281
+
282
+ if dynamic_threshold is not None:
283
+ raise NotImplementedError()
284
+
285
+ # direction pointing to x_t
286
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
287
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
288
+ if noise_dropout > 0.:
289
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
290
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
291
+
292
+ return x_prev, pred_x0, cond_output_dict
293
+
294
+ @torch.no_grad()
295
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
296
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
297
+ num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
298
+
299
+ assert t_enc <= num_reference_steps
300
+ num_steps = t_enc
301
+
302
+ if use_original_steps:
303
+ alphas_next = self.alphas_cumprod[:num_steps]
304
+ alphas = self.alphas_cumprod_prev[:num_steps]
305
+ else:
306
+ alphas_next = self.ddim_alphas[:num_steps]
307
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
308
+
309
+ x_next = x0
310
+ intermediates = []
311
+ inter_steps = []
312
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
313
+ t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
314
+ if unconditional_guidance_scale == 1.:
315
+ noise_pred = self.model.apply_model(x_next, t, c)[0]
316
+ else:
317
+ assert unconditional_conditioning is not None
318
+ e_t_uncond, noise_pred = torch.chunk(
319
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
320
+ torch.cat((unconditional_conditioning, c))), 2)
321
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)[0]
322
+
323
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
324
+ weighted_noise_pred = alphas_next[i].sqrt() * (
325
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
326
+ x_next = xt_weighted + weighted_noise_pred
327
+ if return_intermediates and i % (
328
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
329
+ intermediates.append(x_next)
330
+ inter_steps.append(i)
331
+ elif return_intermediates and i >= num_steps - 2:
332
+ intermediates.append(x_next)
333
+ inter_steps.append(i)
334
+ if callback: callback(i)
335
+
336
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
337
+ if return_intermediates:
338
+ out.update({'intermediates': intermediates})
339
+ return x_next, out
340
+
341
+ @torch.no_grad()
342
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
343
+ # fast, but does not allow for exact reconstruction
344
+ # t serves as an index to gather the correct alphas
345
+ if use_original_steps:
346
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
347
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
348
+ else:
349
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
350
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
351
+
352
+ if noise is None:
353
+ noise = torch.randn_like(x0)
354
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
355
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
356
+
357
+ @torch.no_grad()
358
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
359
+ use_original_steps=False, callback=None):
360
+
361
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
362
+ timesteps = timesteps[:t_start]
363
+
364
+ time_range = np.flip(timesteps)
365
+ total_steps = timesteps.shape[0]
366
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
367
+
368
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
369
+ x_dec = x_latent
370
+ for i, step in enumerate(iterator):
371
+ index = total_steps - i - 1
372
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
373
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
374
+ unconditional_guidance_scale=unconditional_guidance_scale,
375
+ unconditional_conditioning=unconditional_conditioning)
376
+ if callback: callback(i)
377
+ return x_dec
ldm/models/diffusion/ddpm.py ADDED
@@ -0,0 +1,1875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import numpy as np
12
+ import pytorch_lightning as pl
13
+ from torch.optim.lr_scheduler import LambdaLR
14
+ from einops import rearrange, repeat
15
+ from contextlib import contextmanager, nullcontext
16
+ from functools import partial
17
+ import itertools
18
+ from tqdm import tqdm
19
+ from torchvision.utils import make_grid
20
+ from pytorch_lightning.utilities.distributed import rank_zero_only
21
+ from omegaconf import ListConfig
22
+ from torchvision.transforms.functional import resize
23
+ import torchvision.transforms as T
24
+ import random
25
+ import torch.nn.functional as F
26
+ from diffusers.models.autoencoder_kl import AutoencoderKLOutput
27
+ from diffusers.models.vae import DecoderOutput
28
+
29
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
30
+ from ldm.modules.ema import LitEma
31
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
32
+ from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
33
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like, zero_module, conv_nd
34
+ from ldm.models.diffusion.ddim import DDIMSampler
35
+
36
+ __conditioning_keys__ = {'concat': 'c_concat',
37
+ 'crossattn': 'c_crossattn',
38
+ 'adm': 'y'}
39
+
40
+
41
+ def disabled_train(self, mode=True):
42
+ """Overwrite model.train with this function to make sure train/eval mode
43
+ does not change anymore."""
44
+ return self
45
+
46
+
47
+ def uniform_on_device(r1, r2, shape, device):
48
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
49
+
50
+ class DDPM(pl.LightningModule):
51
+ # classic DDPM with Gaussian diffusion, in image space
52
+ def __init__(self,
53
+ unet_config,
54
+ timesteps=1000,
55
+ beta_schedule="linear",
56
+ loss_type="l2",
57
+ ckpt_path=None,
58
+ ignore_keys=[],
59
+ load_only_unet=False,
60
+ monitor="val/loss",
61
+ use_ema=True,
62
+ first_stage_key="image",
63
+ image_size=256,
64
+ channels=3,
65
+ log_every_t=100,
66
+ clip_denoised=True,
67
+ linear_start=1e-4,
68
+ linear_end=2e-2,
69
+ cosine_s=8e-3,
70
+ given_betas=None,
71
+ original_elbo_weight=0.,
72
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
73
+ l_simple_weight=1.,
74
+ conditioning_key=None,
75
+ parameterization="eps", # all assuming fixed variance schedules
76
+ scheduler_config=None,
77
+ use_positional_encodings=False,
78
+ learn_logvar=False,
79
+ logvar_init=0.,
80
+ make_it_fit=False,
81
+ ucg_training=None,
82
+ reset_ema=False,
83
+ reset_num_ema_updates=False,
84
+ l_cond_simple_weight=1.0,
85
+ l_cond_recon_weight=1.0,
86
+ **kwargs
87
+ ):
88
+ super().__init__()
89
+ assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
90
+ self.parameterization = parameterization
91
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
92
+ self.unet_config = unet_config
93
+ self.cond_stage_model = None
94
+ self.clip_denoised = clip_denoised
95
+ self.log_every_t = log_every_t
96
+ self.first_stage_key = first_stage_key
97
+ self.image_size = image_size # try conv?
98
+ self.channels = channels
99
+ self.use_positional_encodings = use_positional_encodings
100
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
101
+ count_params(self.model, verbose=True)
102
+ self.use_ema = use_ema
103
+ if self.use_ema:
104
+ self.model_ema = LitEma(self.model)
105
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
106
+
107
+ self.use_scheduler = scheduler_config is not None
108
+ if self.use_scheduler:
109
+ self.scheduler_config = scheduler_config
110
+ self.imagenet_norm = T.Normalize((0.48145466, 0.4578275, 0.40821073),
111
+ (0.26862954, 0.26130258, 0.27577711))
112
+
113
+ self.v_posterior = v_posterior
114
+ self.original_elbo_weight = original_elbo_weight
115
+ self.l_simple_weight = l_simple_weight
116
+ self.l_cond_simple_weight = l_cond_simple_weight
117
+ self.l_cond_recon_weight = l_cond_recon_weight
118
+
119
+ if monitor is not None:
120
+ self.monitor = monitor
121
+ self.make_it_fit = make_it_fit
122
+ if reset_ema: assert exists(ckpt_path)
123
+ if ckpt_path is not None:
124
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
125
+ if reset_ema:
126
+ assert self.use_ema
127
+ print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
128
+ self.model_ema = LitEma(self.model)
129
+ if reset_num_ema_updates:
130
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
131
+ assert self.use_ema
132
+ self.model_ema.reset_num_updates()
133
+
134
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
135
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
136
+
137
+ self.loss_type = loss_type
138
+
139
+ self.learn_logvar = learn_logvar
140
+ logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
141
+ if self.learn_logvar:
142
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
143
+ else:
144
+ self.register_buffer('logvar', logvar)
145
+
146
+ self.ucg_training = ucg_training or dict()
147
+ if self.ucg_training:
148
+ self.ucg_prng = np.random.RandomState()
149
+
150
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
151
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
152
+ if exists(given_betas):
153
+ betas = given_betas
154
+ else:
155
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
156
+ cosine_s=cosine_s)
157
+ alphas = 1. - betas
158
+ alphas_cumprod = np.cumprod(alphas, axis=0)
159
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
160
+
161
+ timesteps, = betas.shape
162
+ self.num_timesteps = int(timesteps)
163
+ self.linear_start = linear_start
164
+ self.linear_end = linear_end
165
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
166
+
167
+ to_torch = partial(torch.tensor, dtype=torch.float32)
168
+
169
+ self.register_buffer('betas', to_torch(betas))
170
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
171
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
172
+
173
+ # calculations for diffusion q(x_t | x_{t-1}) and others
174
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
175
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
176
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
177
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
178
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
179
+
180
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
181
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
182
+ 1. - alphas_cumprod) + self.v_posterior * betas
183
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
184
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
185
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
186
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
187
+ self.register_buffer('posterior_mean_coef1', to_torch(
188
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
189
+ self.register_buffer('posterior_mean_coef2', to_torch(
190
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
191
+
192
+ if self.parameterization == "eps":
193
+ lvlb_weights = self.betas ** 2 / (
194
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
195
+ elif self.parameterization == "x0":
196
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
197
+ elif self.parameterization == "v":
198
+ lvlb_weights = torch.ones_like(self.betas ** 2 / (
199
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
200
+ else:
201
+ raise NotImplementedError("mu not supported")
202
+ lvlb_weights[0] = lvlb_weights[1]
203
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
204
+ assert not torch.isnan(self.lvlb_weights).all()
205
+
206
+ @contextmanager
207
+ def ema_scope(self, context=None):
208
+ if self.use_ema:
209
+ self.model_ema.store(self.model.parameters())
210
+ self.model_ema.copy_to(self.model)
211
+ if context is not None:
212
+ print(f"{context}: Switched to EMA weights")
213
+ try:
214
+ yield None
215
+ finally:
216
+ if self.use_ema:
217
+ self.model_ema.restore(self.model.parameters())
218
+ if context is not None:
219
+ print(f"{context}: Restored training weights")
220
+
221
+ @torch.no_grad()
222
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
223
+ sd = torch.load(path, map_location="cpu")
224
+ if "state_dict" in list(sd.keys()):
225
+ sd = sd["state_dict"]
226
+ keys = list(sd.keys())
227
+ for k in keys:
228
+ for ik in ignore_keys:
229
+ if k.startswith(ik):
230
+ print("Deleting key {} from state_dict.".format(k))
231
+ del sd[k]
232
+ if self.make_it_fit:
233
+ n_params = len([name for name, _ in
234
+ itertools.chain(self.named_parameters(),
235
+ self.named_buffers())])
236
+ for name, param in tqdm(
237
+ itertools.chain(self.named_parameters(),
238
+ self.named_buffers()),
239
+ desc="Fitting old weights to new weights",
240
+ total=n_params
241
+ ):
242
+ if not name in sd:
243
+ continue
244
+ old_shape = sd[name].shape
245
+ new_shape = param.shape
246
+ assert len(old_shape) == len(new_shape)
247
+ if len(new_shape) > 2:
248
+ # we only modify first two axes
249
+ assert new_shape[2:] == old_shape[2:]
250
+ # assumes first axis corresponds to output dim
251
+ if not new_shape == old_shape:
252
+ new_param = param.clone()
253
+ old_param = sd[name]
254
+ if len(new_shape) == 1:
255
+ for i in range(new_param.shape[0]):
256
+ new_param[i] = old_param[i % old_shape[0]]
257
+ elif len(new_shape) >= 2:
258
+ for i in range(new_param.shape[0]):
259
+ for j in range(new_param.shape[1]):
260
+ new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
261
+
262
+ n_used_old = torch.ones(old_shape[1])
263
+ for j in range(new_param.shape[1]):
264
+ n_used_old[j % old_shape[1]] += 1
265
+ n_used_new = torch.zeros(new_shape[1])
266
+ for j in range(new_param.shape[1]):
267
+ n_used_new[j] = n_used_old[j % old_shape[1]]
268
+
269
+ n_used_new = n_used_new[None, :]
270
+ while len(n_used_new.shape) < len(new_shape):
271
+ n_used_new = n_used_new.unsqueeze(-1)
272
+ new_param /= n_used_new
273
+
274
+ sd[name] = new_param
275
+
276
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
277
+ sd, strict=False)
278
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
279
+ if len(missing) > 0:
280
+ print(f"Missing Keys:\n {missing}")
281
+ if len(unexpected) > 0:
282
+ print(f"\nUnexpected Keys:\n {unexpected}")
283
+
284
+ def q_mean_variance(self, x_start, t):
285
+ """
286
+ Get the distribution q(x_t | x_0).
287
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
288
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
289
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
290
+ """
291
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
292
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
293
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
294
+ return mean, variance, log_variance
295
+
296
+ def predict_start_from_noise(self, x_t, t, noise):
297
+ return (
298
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
299
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
300
+ )
301
+
302
+ def predict_start_from_z_and_v(self, x_t, t, v):
303
+ # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
304
+ # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
305
+ return (
306
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
307
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
308
+ )
309
+
310
+ def predict_eps_from_z_and_v(self, x_t, t, v):
311
+ return (
312
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
313
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
314
+ )
315
+
316
+ def q_posterior(self, x_start, x_t, t):
317
+ posterior_mean = (
318
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
319
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
320
+ )
321
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
322
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
323
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
324
+
325
+ def p_mean_variance(self, x, t, clip_denoised: bool):
326
+ model_out = self.model(x, t)
327
+ if self.parameterization == "eps":
328
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
329
+ elif self.parameterization == "x0":
330
+ x_recon = model_out
331
+ if clip_denoised:
332
+ x_recon.clamp_(-1., 1.)
333
+
334
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
335
+ return model_mean, posterior_variance, posterior_log_variance
336
+
337
+ @torch.no_grad()
338
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
339
+ b, *_, device = *x.shape, x.device
340
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
341
+ noise = noise_like(x.shape, device, repeat_noise)
342
+ # no noise when t == 0
343
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
344
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
345
+
346
+ @torch.no_grad()
347
+ def p_sample_loop(self, shape, return_intermediates=False):
348
+ device = self.betas.device
349
+ b = shape[0]
350
+ img = torch.randn(shape, device=device)
351
+ intermediates = [img]
352
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
353
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
354
+ clip_denoised=self.clip_denoised)
355
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
356
+ intermediates.append(img)
357
+ if return_intermediates:
358
+ return img, intermediates
359
+ return img
360
+
361
+ @torch.no_grad()
362
+ def sample(self, batch_size=16, return_intermediates=False):
363
+ image_size = self.image_size
364
+ channels = self.channels
365
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
366
+ return_intermediates=return_intermediates)
367
+
368
+ def q_sample(self, x_start, t, noise=None):
369
+ noise = default(noise, lambda: torch.randn_like(x_start))
370
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
371
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
372
+
373
+ def get_v(self, x, noise, t):
374
+ return (
375
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
376
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
377
+ )
378
+
379
+ def get_loss(self, pred, target, mean=True):
380
+ if self.loss_type == 'l1':
381
+ loss = (target - pred).abs()
382
+ if mean:
383
+ loss = loss.mean()
384
+ elif self.loss_type == 'l2':
385
+ if mean:
386
+ loss = torch.nn.functional.mse_loss(target, pred)
387
+ else:
388
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
389
+ else:
390
+ raise NotImplementedError("unknown loss type '{loss_type}'")
391
+
392
+ return loss
393
+
394
+ def p_losses(self, x_start, t, noise=None):
395
+ noise = default(noise, lambda: torch.randn_like(x_start))
396
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
397
+ model_out = self.model(x_noisy, t)
398
+
399
+ loss_dict = {}
400
+ if self.parameterization == "eps":
401
+ target = noise
402
+ elif self.parameterization == "x0":
403
+ target = x_start
404
+ elif self.parameterization == "v":
405
+ target = self.get_v(x_start, noise, t)
406
+ else:
407
+ raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
408
+
409
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
410
+
411
+ log_prefix = 'train' if self.training else 'val'
412
+
413
+ loss_dict.update({f'{log_prefix}_loss_simple': loss.mean()})
414
+ loss_simple = loss.mean() * self.l_simple_weight
415
+
416
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
417
+ loss_dict.update({f'{log_prefix}_loss_vlb': loss_vlb})
418
+
419
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
420
+
421
+ loss_dict.update({f'{log_prefix}_loss': loss})
422
+
423
+ return loss, loss_dict
424
+
425
+ def forward(self, x, *args, **kwargs):
426
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
427
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
428
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
429
+ return self.p_losses(x, t, *args, **kwargs)
430
+
431
+ def get_input(self, batch, k):
432
+ x = batch[k]
433
+ if len(x.shape) == 3:
434
+ x = x[..., None]
435
+ x = rearrange(x, 'b h w c -> b c h w')
436
+ x = x.to(memory_format=torch.contiguous_format).float()
437
+ return x
438
+
439
+ def shared_step(self, batch):
440
+ x = self.get_input(batch, self.first_stage_key)
441
+ loss, loss_dict = self(x)
442
+ return loss, loss_dict
443
+
444
+ def training_step(self, batch, batch_idx):
445
+ self.batch = batch
446
+ for k in self.ucg_training:
447
+ p = self.ucg_training[k]["p"]
448
+ val = self.ucg_training[k]["val"]
449
+ if val is None:
450
+ val = ""
451
+ for i in range(len(batch[k])):
452
+ if self.ucg_prng.choice(2, p=[1 - p, p]):
453
+ batch[k][i] = val
454
+ loss, loss_dict = self.shared_step(batch)
455
+
456
+ self.log_dict(loss_dict, prog_bar=True,
457
+ logger=True, on_step=True, on_epoch=True)
458
+
459
+ self.log("global_step", self.global_step,
460
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
461
+
462
+ if self.use_scheduler:
463
+ lr = self.optimizers().param_groups[0]['lr']
464
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
465
+
466
+ return loss
467
+
468
+ @torch.no_grad()
469
+ def validation_step(self, batch, batch_idx):
470
+ _, loss_dict_no_ema = self.shared_step(batch)
471
+ with self.ema_scope():
472
+ _, loss_dict_ema = self.shared_step(batch)
473
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
474
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
475
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
476
+
477
+ def on_train_batch_end(self, *args, **kwargs):
478
+ if self.use_ema:
479
+ self.model_ema(self.model)
480
+
481
+ def _get_rows_from_list(self, samples):
482
+ n_imgs_per_row = len(samples)
483
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
484
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
485
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
486
+ return denoise_grid
487
+
488
+ @torch.no_grad()
489
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
490
+ log = dict()
491
+ x = self.get_input(batch, self.first_stage_key)
492
+ N = min(x.shape[0], N)
493
+ n_row = min(x.shape[0], n_row)
494
+ x = x.to(self.device)[:N]
495
+ log["inputs"] = x
496
+
497
+ # get diffusion row
498
+ diffusion_row = list()
499
+ x_start = x[:n_row]
500
+
501
+ for t in range(self.num_timesteps):
502
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
503
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
504
+ t = t.to(self.device).long()
505
+ noise = torch.randn_like(x_start)
506
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
507
+ diffusion_row.append(x_noisy)
508
+
509
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
510
+
511
+ if sample:
512
+ # get denoise row
513
+ with self.ema_scope("Plotting"):
514
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
515
+
516
+ log["samples"] = samples
517
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
518
+
519
+ if return_keys:
520
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
521
+ return log
522
+ else:
523
+ return {key: log[key] for key in return_keys}
524
+ return log
525
+
526
+ def configure_optimizers(self):
527
+ lr = self.learning_rate
528
+ params = list(self.model.parameters())
529
+ if self.learn_logvar:
530
+ params = params + [self.logvar]
531
+ opt = torch.optim.AdamW(params, lr=lr)
532
+ return opt
533
+
534
+
535
+ class LatentDiffusion(DDPM):
536
+ """main class"""
537
+
538
+ def __init__(self,
539
+ first_stage_config,
540
+ cond_stage_config,
541
+ num_timesteps_cond=None,
542
+ cond_stage_key="image",
543
+ cond_stage_trainable=False,
544
+ concat_mode=True,
545
+ cond_stage_forward=None,
546
+ conditioning_key=None,
547
+ scale_factor=1.0,
548
+ scale_by_std=False,
549
+ force_null_conditioning=False,
550
+ *args, **kwargs):
551
+ self.kwargs = kwargs
552
+ self.force_null_conditioning = force_null_conditioning
553
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
554
+ self.scale_by_std = scale_by_std
555
+ self.cond_stage_trainable = cond_stage_trainable
556
+ assert self.num_timesteps_cond <= kwargs['timesteps']
557
+ if conditioning_key is None:
558
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
559
+ if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
560
+ conditioning_key = None
561
+ ckpt_path = kwargs.pop("ckpt_path", None)
562
+ reset_ema = kwargs.pop("reset_ema", False)
563
+ reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
564
+ ignore_keys = kwargs.pop("ignore_keys", [])
565
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
566
+ self.concat_mode = concat_mode
567
+ self.cond_stage_key = cond_stage_key
568
+ try:
569
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
570
+ except:
571
+ self.num_downs = 0
572
+ if not scale_by_std:
573
+ self.scale_factor = scale_factor
574
+ else:
575
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
576
+
577
+ self.instantiate_first_stage(first_stage_config)
578
+ self.instantiate_cond_stage(cond_stage_config)
579
+ self.cond_stage_forward = cond_stage_forward
580
+ self.clip_denoised = False
581
+ self.bbox_tokenizer = None
582
+
583
+ if self.kwargs["use_imageCLIP"]:
584
+ self.proj_out = nn.Linear(1024, 768)
585
+ else:
586
+ self.proj_out = None
587
+ if self.use_pbe_weight:
588
+ print("learnable vector gene")
589
+ self.learnable_vector = nn.Parameter(torch.randn((1,1,768)), requires_grad=True)
590
+ else:
591
+ self.learnable_vector = None
592
+
593
+ if self.kwargs["use_lastzc"]: # deprecated
594
+ self.lastzc = zero_module(conv_nd(2, 4, 4, 1, 1, 0))
595
+ else:
596
+ self.lastzc = None
597
+
598
+ self.restarted_from_ckpt = False
599
+ if ckpt_path is not None:
600
+ self.init_from_ckpt(ckpt_path, ignore_keys)
601
+ self.restarted_from_ckpt = True
602
+ if reset_ema:
603
+ assert self.use_ema
604
+ print(
605
+ f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
606
+ self.model_ema = LitEma(self.model)
607
+ if reset_num_ema_updates:
608
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
609
+ assert self.use_ema
610
+ self.model_ema.reset_num_updates()
611
+
612
+ def make_cond_schedule(self, ):
613
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
614
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
615
+ self.cond_ids[:self.num_timesteps_cond] = ids
616
+
617
+ @rank_zero_only
618
+ @torch.no_grad()
619
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
620
+ # only for very first batch
621
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
622
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
623
+ # set rescale weight to 1./std of encodings
624
+ print("### USING STD-RESCALING ###")
625
+ x = super().get_input(batch, self.first_stage_key)
626
+ x = x.to(self.device)
627
+ encoder_posterior = self.encode_first_stage(x)
628
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
629
+ del self.scale_factor
630
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
631
+ print(f"setting self.scale_factor to {self.scale_factor}")
632
+ print("### USING STD-RESCALING ###")
633
+
634
+ def register_schedule(self,
635
+ given_betas=None, beta_schedule="linear", timesteps=1000,
636
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
637
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
638
+
639
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
640
+ if self.shorten_cond_schedule:
641
+ self.make_cond_schedule()
642
+
643
+ def instantiate_first_stage(self, config):
644
+ model = instantiate_from_config(config)
645
+ self.first_stage_model = model.eval()
646
+ self.first_stage_model.train = disabled_train
647
+ for param in self.first_stage_model.parameters():
648
+ param.requires_grad = False
649
+
650
+ def instantiate_cond_stage(self, config):
651
+ if not self.cond_stage_trainable:
652
+ if config == "__is_first_stage__":
653
+ print("Using first stage also as cond stage.")
654
+ self.cond_stage_model = self.first_stage_model
655
+ elif config == "__is_unconditional__":
656
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
657
+ self.cond_stage_model = None
658
+ else:
659
+ model = instantiate_from_config(config)
660
+ self.cond_stage_model = model
661
+ else:
662
+ assert config != '__is_first_stage__'
663
+ assert config != '__is_unconditional__'
664
+ model = instantiate_from_config(config)
665
+ self.cond_stage_model = model
666
+
667
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
668
+ denoise_row = []
669
+ for zd in tqdm(samples, desc=desc):
670
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
671
+ force_not_quantize=force_no_decoder_quantization))
672
+ n_imgs_per_row = len(denoise_row)
673
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
674
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
675
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
676
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
677
+ return denoise_grid
678
+
679
+ def get_first_stage_encoding(self, encoder_posterior):
680
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
681
+ z = encoder_posterior.sample()
682
+ elif isinstance(encoder_posterior, torch.Tensor):
683
+ z = encoder_posterior
684
+ elif isinstance(encoder_posterior, AutoencoderKLOutput):
685
+ z = encoder_posterior.latent_dist.sample()
686
+ else:
687
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
688
+ return self.scale_factor * z
689
+
690
+ def get_learned_conditioning(self, c):
691
+ if self.cond_stage_forward is None:
692
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
693
+ c = self.cond_stage_model.encode(c)
694
+ if isinstance(c, DiagonalGaussianDistribution):
695
+ c = c.mode()
696
+ else:
697
+ c = self.cond_stage_model(c)
698
+ else:
699
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
700
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
701
+ return c
702
+
703
+ def meshgrid(self, h, w):
704
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
705
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
706
+
707
+ arr = torch.cat([y, x], dim=-1)
708
+ return arr
709
+
710
+ def delta_border(self, h, w):
711
+ """
712
+ :param h: height
713
+ :param w: width
714
+ :return: normalized distance to image border,
715
+ wtith min distance = 0 at border and max dist = 0.5 at image center
716
+ """
717
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
718
+ arr = self.meshgrid(h, w) / lower_right_corner
719
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
720
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
721
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
722
+ return edge_dist
723
+
724
+ def get_weighting(self, h, w, Ly, Lx, device):
725
+ weighting = self.delta_border(h, w)
726
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
727
+ self.split_input_params["clip_max_weight"], )
728
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
729
+
730
+ if self.split_input_params["tie_braker"]:
731
+ L_weighting = self.delta_border(Ly, Lx)
732
+ L_weighting = torch.clip(L_weighting,
733
+ self.split_input_params["clip_min_tie_weight"],
734
+ self.split_input_params["clip_max_tie_weight"])
735
+
736
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
737
+ weighting = weighting * L_weighting
738
+ return weighting
739
+
740
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
741
+ """
742
+ :param x: img of size (bs, c, h, w)
743
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
744
+ """
745
+ bs, nc, h, w = x.shape
746
+
747
+ # number of crops in image
748
+ Ly = (h - kernel_size[0]) // stride[0] + 1
749
+ Lx = (w - kernel_size[1]) // stride[1] + 1
750
+
751
+ if uf == 1 and df == 1:
752
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
753
+ unfold = torch.nn.Unfold(**fold_params)
754
+
755
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
756
+
757
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
758
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
759
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
760
+
761
+ elif uf > 1 and df == 1:
762
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
763
+ unfold = torch.nn.Unfold(**fold_params)
764
+
765
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
766
+ dilation=1, padding=0,
767
+ stride=(stride[0] * uf, stride[1] * uf))
768
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
769
+
770
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
771
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
772
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
773
+
774
+ elif df > 1 and uf == 1:
775
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
776
+ unfold = torch.nn.Unfold(**fold_params)
777
+
778
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
779
+ dilation=1, padding=0,
780
+ stride=(stride[0] // df, stride[1] // df))
781
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
782
+
783
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
784
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
785
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
786
+
787
+ else:
788
+ raise NotImplementedError
789
+
790
+ return fold, unfold, normalization, weighting
791
+
792
+ @torch.no_grad()
793
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
794
+ cond_key=None, return_original_cond=False, bs=None, return_x=False, no_latent=False, is_controlnet=False):
795
+ x = super().get_input(batch, k)
796
+ if bs is not None:
797
+ x = x[:bs]
798
+ x = x.to(self.device)
799
+ if no_latent:
800
+ _,_,h,w = x.shape
801
+ x = resize(x, (h//8, w//8))
802
+ return [x, None]
803
+ encoder_posterior = self.encode_first_stage(x)
804
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
805
+ if is_controlnet and self.lastzc is not None:
806
+ z = self.lastzc(z)
807
+
808
+ if self.model.conditioning_key is not None and not self.force_null_conditioning:
809
+ if cond_key is None:
810
+ cond_key = self.cond_stage_key
811
+ if cond_key != self.first_stage_key:
812
+ if cond_key in ['caption', 'coordinates_bbox', "txt"]:
813
+ xc = batch[cond_key]
814
+ elif cond_key in ['class_label', 'cls']:
815
+ xc = batch
816
+ else:
817
+ xc = super().get_input(batch, cond_key).to(self.device)
818
+ else:
819
+ xc = x
820
+ if not self.cond_stage_trainable or force_c_encode:
821
+ if self.kwargs["use_imageCLIP"]:
822
+ xc = resize(xc, (224,224))
823
+ xc = self.imagenet_norm((xc+1)/2)
824
+ c = xc
825
+ else:
826
+ if isinstance(xc, dict) or isinstance(xc, list):
827
+ c = self.get_learned_conditioning(xc)
828
+ else:
829
+ c = self.get_learned_conditioning(xc.to(self.device))
830
+ c = c.float()
831
+ else:
832
+ if self.kwargs["use_imageCLIP"]:
833
+ xc = resize(xc, (224,224))
834
+ xc = self.imagenet_norm((xc+1)/2)
835
+ c = xc
836
+ if bs is not None:
837
+ c = c[:bs]
838
+
839
+ if self.use_positional_encodings:
840
+ pos_x, pos_y = self.compute_latent_shifts(batch)
841
+ ckey = __conditioning_keys__[self.model.conditioning_key]
842
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
843
+
844
+ else:
845
+ c = None
846
+ xc = None
847
+ if self.use_positional_encodings:
848
+ pos_x, pos_y = self.compute_latent_shifts(batch)
849
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
850
+
851
+ out = [z, c]
852
+ if return_first_stage_outputs:
853
+ xrec = self.decode_first_stage(z)
854
+ out.extend([x, xrec])
855
+ if return_x:
856
+ out.extend([x])
857
+ if return_original_cond:
858
+ out.append(xc)
859
+ return out
860
+
861
+ @torch.no_grad()
862
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
863
+ if predict_cids:
864
+ if z.dim() == 4:
865
+ z = torch.argmax(z.exp(), dim=1).long()
866
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
867
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
868
+
869
+ z = 1. / self.scale_factor * z
870
+ output = self.first_stage_model.decode(z)
871
+ if not isinstance(output, DecoderOutput):
872
+ return output
873
+ else:
874
+ return output.sample
875
+ def decode_first_stage_train(self, z, predict_cids=False, force_not_quantize=False):
876
+ if predict_cids:
877
+ if z.dim() == 4:
878
+ z = torch.argmax(z.exp(), dim=1).long()
879
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
880
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
881
+
882
+ z = 1. / self.scale_factor * z
883
+ return self.first_stage_model.decode(z)
884
+
885
+ @torch.no_grad()
886
+ def encode_first_stage(self, x):
887
+ return self.first_stage_model.encode(x)
888
+
889
+ def shared_step(self, batch, **kwargs):
890
+ x, c = self.get_input(batch, self.first_stage_key)
891
+ loss = self(x, c)
892
+ return loss
893
+
894
+ def forward(self, x, c, *args, **kwargs):
895
+ if not self.use_pbe_weight:
896
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
897
+ if self.model.conditioning_key is not None:
898
+ assert c is not None
899
+ if self.cond_stage_trainable:
900
+ c = self.get_learned_conditioning(c)
901
+ if self.shorten_cond_schedule: # TODO: drop this option
902
+ tc = self.cond_ids[t].to(self.device)
903
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
904
+ return self.p_losses(x, c, t, *args, **kwargs)
905
+ # pbe negative condition
906
+ else:
907
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
908
+ self.u_cond_prop=random.uniform(0, 1)
909
+ c["c_crossattn"] = [self.get_learned_conditioning(c["c_crossattn"])]
910
+ if self.u_cond_prop < self.u_cond_percent:
911
+ c["c_crossattn"] = [self.learnable_vector.repeat(x.shape[0],1,1)]
912
+ return self.p_losses(x, c, t, *args, **kwargs)
913
+
914
+
915
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
916
+ if isinstance(cond, dict):
917
+ # hybrid case, cond is expected to be a dict
918
+ pass
919
+ else:
920
+ if not isinstance(cond, list):
921
+ cond = [cond]
922
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
923
+ cond = {key: cond}
924
+
925
+ x_recon = self.model(x_noisy, t, **cond)
926
+
927
+ if isinstance(x_recon, tuple) and not return_ids:
928
+ return x_recon[0]
929
+ else:
930
+ return x_recon
931
+
932
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
933
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
934
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
935
+
936
+ def _prior_bpd(self, x_start):
937
+ """
938
+ Get the prior KL term for the variational lower-bound, measured in
939
+ bits-per-dim.
940
+ This term can't be optimized, as it only depends on the encoder.
941
+ :param x_start: the [N x C x ...] tensor of inputs.
942
+ :return: a batch of [N] KL values (in bits), one per batch element.
943
+ """
944
+ batch_size = x_start.shape[0]
945
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
946
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
947
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
948
+ return mean_flat(kl_prior) / np.log(2.0)
949
+ def p_losses(self, x_start, cond, t, noise=None):
950
+ loss_dict = {}
951
+ noise = default(noise, lambda: torch.randn_like(x_start))
952
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
953
+ model_output, cond_output_dict = self.apply_model(x_noisy, t, cond)
954
+
955
+ prefix = 'train' if self.training else 'val'
956
+
957
+ if self.parameterization == "x0":
958
+ target = x_start
959
+ elif self.parameterization == "eps":
960
+ target = noise
961
+ elif self.parameterization == "v":
962
+ target = self.get_v(x_start, noise, t)
963
+ else:
964
+ raise NotImplementedError()
965
+ model_loss = None
966
+ if isinstance(model_output, tuple):
967
+ model_output, model_loss = model_output
968
+
969
+ if self.only_agn_simple_loss:
970
+ _, _, l_h, l_w = model_output.shape
971
+ m_agn = F.interpolate(super().get_input(self.batch, "agn_mask"), (l_h, l_w))
972
+ loss_simple = self.get_loss(model_output * (1-m_agn), target * (1-m_agn), mean=False).mean([1, 2, 3])
973
+ else:
974
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
975
+ loss_dict.update({f'simple': loss_simple.mean()})
976
+
977
+ logvar_t = self.logvar[t].to(self.device)
978
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
979
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
980
+ if self.learn_logvar:
981
+ loss_dict.update({f'gamma': loss.mean()})
982
+ loss_dict.update({'logvar': self.logvar.data.mean()})
983
+ loss = self.l_simple_weight * loss.mean()
984
+
985
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
986
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
987
+ if self.original_elbo_weight != 0:
988
+ loss_dict.update({f'loss_vlb': loss_vlb})
989
+ loss += (self.original_elbo_weight * loss_vlb)
990
+
991
+ if model_loss is not None:
992
+ loss += model_loss
993
+ loss_dict.update({f"model loss" : model_loss})
994
+ loss_dict.update({f'{prefix}_loss': loss})
995
+
996
+ return loss, loss_dict
997
+
998
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
999
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
1000
+ t_in = t
1001
+ model_out, cond_output_dict = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
1002
+ if isinstance(model_out, tuple):
1003
+ model_out, _ = model_out
1004
+
1005
+ if score_corrector is not None:
1006
+ assert self.parameterization == "eps"
1007
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
1008
+
1009
+ if return_codebook_ids:
1010
+ model_out, logits = model_out
1011
+
1012
+ if self.parameterization == "eps":
1013
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
1014
+ elif self.parameterization == "x0":
1015
+ x_recon = model_out
1016
+ else:
1017
+ raise NotImplementedError()
1018
+
1019
+ if clip_denoised:
1020
+ x_recon.clamp_(-1., 1.)
1021
+ if quantize_denoised:
1022
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
1023
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
1024
+ if return_codebook_ids:
1025
+ return model_mean, posterior_variance, posterior_log_variance, logits
1026
+ elif return_x0:
1027
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
1028
+ else:
1029
+ return model_mean, posterior_variance, posterior_log_variance
1030
+
1031
+ @torch.no_grad()
1032
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
1033
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1034
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1035
+ b, *_, device = *x.shape, x.device
1036
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1037
+ return_codebook_ids=return_codebook_ids,
1038
+ quantize_denoised=quantize_denoised,
1039
+ return_x0=return_x0,
1040
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1041
+ if return_codebook_ids:
1042
+ raise DeprecationWarning("Support dropped.")
1043
+ model_mean, _, model_log_variance, logits = outputs
1044
+ elif return_x0:
1045
+ model_mean, _, model_log_variance, x0 = outputs
1046
+ else:
1047
+ model_mean, _, model_log_variance = outputs
1048
+
1049
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1050
+ if noise_dropout > 0.:
1051
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1052
+ # no noise when t == 0
1053
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1054
+
1055
+ if return_codebook_ids:
1056
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1057
+ if return_x0:
1058
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1059
+ else:
1060
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1061
+
1062
+ @torch.no_grad()
1063
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1064
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1065
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1066
+ log_every_t=None):
1067
+ if not log_every_t:
1068
+ log_every_t = self.log_every_t
1069
+ timesteps = self.num_timesteps
1070
+ if batch_size is not None:
1071
+ b = batch_size if batch_size is not None else shape[0]
1072
+ shape = [batch_size] + list(shape)
1073
+ else:
1074
+ b = batch_size = shape[0]
1075
+ if x_T is None:
1076
+ img = torch.randn(shape, device=self.device)
1077
+ else:
1078
+ img = x_T
1079
+ intermediates = []
1080
+ if cond is not None:
1081
+ if isinstance(cond, dict):
1082
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1083
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1084
+ else:
1085
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1086
+
1087
+ if start_T is not None:
1088
+ timesteps = min(timesteps, start_T)
1089
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1090
+ total=timesteps) if verbose else reversed(
1091
+ range(0, timesteps))
1092
+ if type(temperature) == float:
1093
+ temperature = [temperature] * timesteps
1094
+
1095
+ for i in iterator:
1096
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1097
+ if self.shorten_cond_schedule:
1098
+ assert self.model.conditioning_key != 'hybrid'
1099
+ tc = self.cond_ids[ts].to(cond.device)
1100
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1101
+
1102
+ img, x0_partial = self.p_sample(img, cond, ts,
1103
+ clip_denoised=self.clip_denoised,
1104
+ quantize_denoised=quantize_denoised, return_x0=True,
1105
+ temperature=temperature[i], noise_dropout=noise_dropout,
1106
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1107
+ if mask is not None:
1108
+ assert x0 is not None
1109
+ img_orig = self.q_sample(x0, ts)
1110
+ img = img_orig * mask + (1. - mask) * img
1111
+
1112
+ if i % log_every_t == 0 or i == timesteps - 1:
1113
+ intermediates.append(x0_partial)
1114
+ if callback: callback(i)
1115
+ if img_callback: img_callback(img, i)
1116
+ return img, intermediates
1117
+
1118
+ @torch.no_grad()
1119
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1120
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1121
+ mask=None, x0=None, img_callback=None, start_T=None,
1122
+ log_every_t=None):
1123
+
1124
+ if not log_every_t:
1125
+ log_every_t = self.log_every_t
1126
+ device = self.betas.device
1127
+ b = shape[0]
1128
+ if x_T is None:
1129
+ img = torch.randn(shape, device=device)
1130
+ else:
1131
+ img = x_T
1132
+
1133
+ intermediates = [img]
1134
+ if timesteps is None:
1135
+ timesteps = self.num_timesteps
1136
+
1137
+ if start_T is not None:
1138
+ timesteps = min(timesteps, start_T)
1139
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1140
+ range(0, timesteps))
1141
+
1142
+ if mask is not None:
1143
+ assert x0 is not None
1144
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1145
+
1146
+ for i in iterator:
1147
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1148
+ if self.shorten_cond_schedule:
1149
+ assert self.model.conditioning_key != 'hybrid'
1150
+ tc = self.cond_ids[ts].to(cond.device)
1151
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1152
+
1153
+ img = self.p_sample(img, cond, ts,
1154
+ clip_denoised=self.clip_denoised,
1155
+ quantize_denoised=quantize_denoised)
1156
+ if mask is not None:
1157
+ img_orig = self.q_sample(x0, ts)
1158
+ img = img_orig * mask + (1. - mask) * img
1159
+
1160
+ if i % log_every_t == 0 or i == timesteps - 1:
1161
+ intermediates.append(img)
1162
+ if callback: callback(i)
1163
+ if img_callback: img_callback(img, i)
1164
+
1165
+ if return_intermediates:
1166
+ return img, intermediates
1167
+ return img
1168
+
1169
+ @torch.no_grad()
1170
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1171
+ verbose=True, timesteps=None, quantize_denoised=False,
1172
+ mask=None, x0=None, shape=None, **kwargs):
1173
+ if shape is None:
1174
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1175
+ if cond is not None:
1176
+ if isinstance(cond, dict):
1177
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1178
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1179
+ else:
1180
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1181
+ return self.p_sample_loop(cond,
1182
+ shape,
1183
+ return_intermediates=return_intermediates, x_T=x_T,
1184
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1185
+ mask=mask, x0=x0)
1186
+
1187
+ @torch.no_grad()
1188
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1189
+ if ddim:
1190
+ ddim_sampler = DDIMSampler(self)
1191
+ shape = (self.channels, self.image_size, self.image_size)
1192
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
1193
+ shape, cond, verbose=False, **kwargs)
1194
+
1195
+ else:
1196
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1197
+ return_intermediates=True, **kwargs)
1198
+
1199
+ return samples, intermediates
1200
+
1201
+ @torch.no_grad()
1202
+ def get_unconditional_conditioning(self, batch_size, null_label=None):
1203
+ if null_label is not None:
1204
+ xc = null_label
1205
+ if isinstance(xc, ListConfig):
1206
+ xc = list(xc)
1207
+ if isinstance(xc, dict) or isinstance(xc, list):
1208
+ c = self.get_learned_conditioning(xc)
1209
+ else:
1210
+ if hasattr(xc, "to"):
1211
+ xc = xc.to(self.device)
1212
+ c = self.get_learned_conditioning(xc)
1213
+ else:
1214
+ if self.cond_stage_key in ["class_label", "cls"]:
1215
+ xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
1216
+ return self.get_learned_conditioning(xc)
1217
+ else:
1218
+ raise NotImplementedError("todo")
1219
+ if isinstance(c, list): # in case the encoder gives us a list
1220
+ for i in range(len(c)):
1221
+ c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
1222
+ else:
1223
+ c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
1224
+ return c
1225
+
1226
+ @torch.no_grad()
1227
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
1228
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1229
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1230
+ use_ema_scope=True,
1231
+ **kwargs):
1232
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1233
+ use_ddim = ddim_steps is not None
1234
+
1235
+ log = dict()
1236
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1237
+ return_first_stage_outputs=True,
1238
+ force_c_encode=True,
1239
+ return_original_cond=True,
1240
+ bs=N)
1241
+ N = min(x.shape[0], N)
1242
+ n_row = min(x.shape[0], n_row)
1243
+ log["inputs"] = x
1244
+ log["reconstruction"] = xrec
1245
+ if self.model.conditioning_key is not None:
1246
+ if hasattr(self.cond_stage_model, "decode"):
1247
+ xc = self.cond_stage_model.decode(c)
1248
+ log["conditioning"] = xc
1249
+ elif self.cond_stage_key in ["caption", "txt"]:
1250
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1251
+ log["conditioning"] = xc
1252
+ elif self.cond_stage_key in ['class_label', "cls"]:
1253
+ try:
1254
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1255
+ log['conditioning'] = xc
1256
+ except KeyError:
1257
+ # probably no "human_label" in batch
1258
+ pass
1259
+ elif isimage(xc):
1260
+ log["conditioning"] = xc
1261
+ if ismap(xc):
1262
+ log["original_conditioning"] = self.to_rgb(xc)
1263
+
1264
+ if plot_diffusion_rows:
1265
+ # get diffusion row
1266
+ diffusion_row = list()
1267
+ z_start = z[:n_row]
1268
+ for t in range(self.num_timesteps):
1269
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1270
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1271
+ t = t.to(self.device).long()
1272
+ noise = torch.randn_like(z_start)
1273
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1274
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1275
+
1276
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1277
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1278
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1279
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1280
+ log["diffusion_row"] = diffusion_grid
1281
+
1282
+ if sample:
1283
+ # get denoise row
1284
+ with ema_scope("Sampling"):
1285
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1286
+ ddim_steps=ddim_steps, eta=ddim_eta)
1287
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1288
+ x_samples = self.decode_first_stage(samples)
1289
+ log["samples"] = x_samples
1290
+ if plot_denoise_rows:
1291
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1292
+ log["denoise_row"] = denoise_grid
1293
+
1294
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1295
+ self.first_stage_model, IdentityFirstStage):
1296
+ # also display when quantizing x0 while sampling
1297
+ with ema_scope("Plotting Quantized Denoised"):
1298
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1299
+ ddim_steps=ddim_steps, eta=ddim_eta,
1300
+ quantize_denoised=True)
1301
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1302
+ # quantize_denoised=True)
1303
+ x_samples = self.decode_first_stage(samples.to(self.device))
1304
+ log["samples_x0_quantized"] = x_samples
1305
+
1306
+ if unconditional_guidance_scale > 1.0:
1307
+ uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1308
+ if self.model.conditioning_key == "crossattn-adm":
1309
+ uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
1310
+ with ema_scope("Sampling with classifier-free guidance"):
1311
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1312
+ ddim_steps=ddim_steps, eta=ddim_eta,
1313
+ unconditional_guidance_scale=unconditional_guidance_scale,
1314
+ unconditional_conditioning=uc,
1315
+ )
1316
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1317
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1318
+
1319
+ if inpaint:
1320
+ # make a simple center square
1321
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1322
+ mask = torch.ones(N, h, w).to(self.device)
1323
+ # zeros will be filled in
1324
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1325
+ mask = mask[:, None, ...]
1326
+ with ema_scope("Plotting Inpaint"):
1327
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1328
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1329
+ x_samples = self.decode_first_stage(samples.to(self.device))
1330
+ log["samples_inpainting"] = x_samples
1331
+ log["mask"] = mask
1332
+
1333
+ # outpaint
1334
+ mask = 1. - mask
1335
+ with ema_scope("Plotting Outpaint"):
1336
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1337
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1338
+ x_samples = self.decode_first_stage(samples.to(self.device))
1339
+ log["samples_outpainting"] = x_samples
1340
+
1341
+ if plot_progressive_rows:
1342
+ with ema_scope("Plotting Progressives"):
1343
+ img, progressives = self.progressive_denoising(c,
1344
+ shape=(self.channels, self.image_size, self.image_size),
1345
+ batch_size=N)
1346
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1347
+ log["progressive_row"] = prog_row
1348
+
1349
+ if return_keys:
1350
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1351
+ return log
1352
+ else:
1353
+ return {key: log[key] for key in return_keys}
1354
+ return log
1355
+
1356
+ def configure_optimizers(self):
1357
+ lr = self.learning_rate
1358
+ params = list(self.model.parameters())
1359
+ if self.cond_stage_trainable:
1360
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1361
+ params = params + list(self.cond_stage_model.parameters())
1362
+ if self.learn_logvar:
1363
+ print('Diffusion model optimizing logvar')
1364
+ params.append(self.logvar)
1365
+ opt = torch.optim.AdamW(params, lr=lr)
1366
+ if self.use_scheduler:
1367
+ assert 'target' in self.scheduler_config
1368
+ scheduler = instantiate_from_config(self.scheduler_config)
1369
+
1370
+ print("Setting up LambdaLR scheduler...")
1371
+ scheduler = [
1372
+ {
1373
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1374
+ 'interval': 'step',
1375
+ 'frequency': 1
1376
+ }]
1377
+ return [opt], scheduler
1378
+ return opt
1379
+
1380
+ @torch.no_grad()
1381
+ def to_rgb(self, x):
1382
+ x = x.float()
1383
+ if not hasattr(self, "colorize"):
1384
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1385
+ x = nn.functional.conv2d(x, weight=self.colorize)
1386
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1387
+ return x
1388
+
1389
+
1390
+ class DiffusionWrapper(pl.LightningModule):
1391
+ def __init__(self, diff_model_config, conditioning_key):
1392
+ super().__init__()
1393
+ self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
1394
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1395
+ self.conditioning_key = conditioning_key
1396
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
1397
+
1398
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
1399
+ if self.conditioning_key is None:
1400
+ out = self.diffusion_model(x, t)
1401
+ elif self.conditioning_key == 'concat':
1402
+ xc = torch.cat([x] + c_concat, dim=1)
1403
+ out = self.diffusion_model(xc, t)
1404
+ elif self.conditioning_key == 'crossattn':
1405
+ if not self.sequential_cross_attn:
1406
+ cc = torch.cat(c_crossattn, 1)
1407
+ else:
1408
+ cc = c_crossattn
1409
+ out = self.diffusion_model(x, t, context=cc)
1410
+ elif self.conditioning_key == 'hybrid':
1411
+ xc = torch.cat([x] + c_concat, dim=1)
1412
+ cc = torch.cat(c_crossattn, 1)
1413
+ out = self.diffusion_model(xc, t, context=cc)
1414
+ elif self.conditioning_key == 'hybrid-adm':
1415
+ assert c_adm is not None
1416
+ xc = torch.cat([x] + c_concat, dim=1)
1417
+ cc = torch.cat(c_crossattn, 1)
1418
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm)
1419
+ elif self.conditioning_key == 'crossattn-adm':
1420
+ assert c_adm is not None
1421
+ cc = torch.cat(c_crossattn, 1)
1422
+ out = self.diffusion_model(x, t, context=cc, y=c_adm)
1423
+ elif self.conditioning_key == 'adm':
1424
+ cc = c_crossattn[0]
1425
+ out = self.diffusion_model(x, t, y=cc)
1426
+ else:
1427
+ raise NotImplementedError()
1428
+
1429
+ return out
1430
+
1431
+
1432
+ class LatentUpscaleDiffusion(LatentDiffusion):
1433
+ def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
1434
+ super().__init__(*args, **kwargs)
1435
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1436
+ assert not self.cond_stage_trainable
1437
+ self.instantiate_low_stage(low_scale_config)
1438
+ self.low_scale_key = low_scale_key
1439
+ self.noise_level_key = noise_level_key
1440
+
1441
+ def instantiate_low_stage(self, config):
1442
+ model = instantiate_from_config(config)
1443
+ self.low_scale_model = model.eval()
1444
+ self.low_scale_model.train = disabled_train
1445
+ for param in self.low_scale_model.parameters():
1446
+ param.requires_grad = False
1447
+
1448
+ @torch.no_grad()
1449
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1450
+ if not log_mode:
1451
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1452
+ else:
1453
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1454
+ force_c_encode=True, return_original_cond=True, bs=bs)
1455
+ x_low = batch[self.low_scale_key][:bs]
1456
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
1457
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
1458
+ zx, noise_level = self.low_scale_model(x_low)
1459
+ if self.noise_level_key is not None:
1460
+ # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
1461
+ raise NotImplementedError('TODO')
1462
+
1463
+ all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
1464
+ if log_mode:
1465
+ # TODO: maybe disable if too expensive
1466
+ x_low_rec = self.low_scale_model.decode(zx)
1467
+ return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
1468
+ return z, all_conds
1469
+
1470
+ @torch.no_grad()
1471
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1472
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1473
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1474
+ **kwargs):
1475
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1476
+ use_ddim = ddim_steps is not None
1477
+
1478
+ log = dict()
1479
+ z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
1480
+ log_mode=True)
1481
+ N = min(x.shape[0], N)
1482
+ n_row = min(x.shape[0], n_row)
1483
+ log["inputs"] = x
1484
+ log["reconstruction"] = xrec
1485
+ log["x_lr"] = x_low
1486
+ log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
1487
+ if self.model.conditioning_key is not None:
1488
+ if hasattr(self.cond_stage_model, "decode"):
1489
+ xc = self.cond_stage_model.decode(c)
1490
+ log["conditioning"] = xc
1491
+ elif self.cond_stage_key in ["caption", "txt"]:
1492
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1493
+ log["conditioning"] = xc
1494
+ elif self.cond_stage_key in ['class_label', 'cls']:
1495
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1496
+ log['conditioning'] = xc
1497
+ elif isimage(xc):
1498
+ log["conditioning"] = xc
1499
+ if ismap(xc):
1500
+ log["original_conditioning"] = self.to_rgb(xc)
1501
+
1502
+ if plot_diffusion_rows:
1503
+ # get diffusion row
1504
+ diffusion_row = list()
1505
+ z_start = z[:n_row]
1506
+ for t in range(self.num_timesteps):
1507
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1508
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1509
+ t = t.to(self.device).long()
1510
+ noise = torch.randn_like(z_start)
1511
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1512
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1513
+
1514
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1515
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1516
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1517
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1518
+ log["diffusion_row"] = diffusion_grid
1519
+
1520
+ if sample:
1521
+ # get denoise row
1522
+ with ema_scope("Sampling"):
1523
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1524
+ ddim_steps=ddim_steps, eta=ddim_eta)
1525
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1526
+ x_samples = self.decode_first_stage(samples)
1527
+ log["samples"] = x_samples
1528
+ if plot_denoise_rows:
1529
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1530
+ log["denoise_row"] = denoise_grid
1531
+
1532
+ if unconditional_guidance_scale > 1.0:
1533
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1534
+ # TODO explore better "unconditional" choices for the other keys
1535
+ # maybe guide away from empty text label and highest noise level and maximally degraded zx?
1536
+ uc = dict()
1537
+ for k in c:
1538
+ if k == "c_crossattn":
1539
+ assert isinstance(c[k], list) and len(c[k]) == 1
1540
+ uc[k] = [uc_tmp]
1541
+ elif k == "c_adm": # todo: only run with text-based guidance?
1542
+ assert isinstance(c[k], torch.Tensor)
1543
+ #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
1544
+ uc[k] = c[k]
1545
+ elif isinstance(c[k], list):
1546
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
1547
+ else:
1548
+ uc[k] = c[k]
1549
+
1550
+ with ema_scope("Sampling with classifier-free guidance"):
1551
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1552
+ ddim_steps=ddim_steps, eta=ddim_eta,
1553
+ unconditional_guidance_scale=unconditional_guidance_scale,
1554
+ unconditional_conditioning=uc,
1555
+ )
1556
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1557
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1558
+
1559
+ if plot_progressive_rows:
1560
+ with ema_scope("Plotting Progressives"):
1561
+ img, progressives = self.progressive_denoising(c,
1562
+ shape=(self.channels, self.image_size, self.image_size),
1563
+ batch_size=N)
1564
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1565
+ log["progressive_row"] = prog_row
1566
+
1567
+ return log
1568
+
1569
+
1570
+ class LatentFinetuneDiffusion(LatentDiffusion):
1571
+ """
1572
+ Basis for different finetunas, such as inpainting or depth2image
1573
+ To disable finetuning mode, set finetune_keys to None
1574
+ """
1575
+
1576
+ def __init__(self,
1577
+ concat_keys: tuple,
1578
+ finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1579
+ "model_ema.diffusion_modelinput_blocks00weight"
1580
+ ),
1581
+ keep_finetune_dims=4,
1582
+ # if model was trained without concat mode before and we would like to keep these channels
1583
+ c_concat_log_start=None, # to log reconstruction of c_concat codes
1584
+ c_concat_log_end=None,
1585
+ *args, **kwargs
1586
+ ):
1587
+ ckpt_path = kwargs.pop("ckpt_path", None)
1588
+ ignore_keys = kwargs.pop("ignore_keys", list())
1589
+ super().__init__(*args, **kwargs)
1590
+ self.finetune_keys = finetune_keys
1591
+ self.concat_keys = concat_keys
1592
+ self.keep_dims = keep_finetune_dims
1593
+ self.c_concat_log_start = c_concat_log_start
1594
+ self.c_concat_log_end = c_concat_log_end
1595
+ if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1596
+ if exists(ckpt_path):
1597
+ self.init_from_ckpt(ckpt_path, ignore_keys)
1598
+
1599
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1600
+ sd = torch.load(path, map_location="cpu")
1601
+ if "state_dict" in list(sd.keys()):
1602
+ sd = sd["state_dict"]
1603
+ keys = list(sd.keys())
1604
+ for k in keys:
1605
+ for ik in ignore_keys:
1606
+ if k.startswith(ik):
1607
+ print("Deleting key {} from state_dict.".format(k))
1608
+ del sd[k]
1609
+
1610
+ # make it explicit, finetune by including extra input channels
1611
+ if exists(self.finetune_keys) and k in self.finetune_keys:
1612
+ new_entry = None
1613
+ for name, param in self.named_parameters():
1614
+ if name in self.finetune_keys:
1615
+ print(
1616
+ f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1617
+ new_entry = torch.zeros_like(param) # zero init
1618
+ assert exists(new_entry), 'did not find matching parameter to modify'
1619
+ new_entry[:, :self.keep_dims, ...] = sd[k]
1620
+ sd[k] = new_entry
1621
+
1622
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
1623
+ sd, strict=False)
1624
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1625
+ if len(missing) > 0:
1626
+ print(f"Missing Keys: {missing}")
1627
+ if len(unexpected) > 0:
1628
+ print(f"Unexpected Keys: {unexpected}")
1629
+
1630
+ @torch.no_grad()
1631
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1632
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1633
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1634
+ use_ema_scope=True,
1635
+ **kwargs):
1636
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1637
+ use_ddim = ddim_steps is not None
1638
+
1639
+ log = dict()
1640
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1641
+ c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1642
+ N = min(x.shape[0], N)
1643
+ n_row = min(x.shape[0], n_row)
1644
+ log["inputs"] = x
1645
+ log["reconstruction"] = xrec
1646
+ if self.model.conditioning_key is not None:
1647
+ if hasattr(self.cond_stage_model, "decode"):
1648
+ xc = self.cond_stage_model.decode(c)
1649
+ log["conditioning"] = xc
1650
+ elif self.cond_stage_key in ["caption", "txt"]:
1651
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1652
+ log["conditioning"] = xc
1653
+ elif self.cond_stage_key in ['class_label', 'cls']:
1654
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1655
+ log['conditioning'] = xc
1656
+ elif isimage(xc):
1657
+ log["conditioning"] = xc
1658
+ if ismap(xc):
1659
+ log["original_conditioning"] = self.to_rgb(xc)
1660
+
1661
+ if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1662
+ log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
1663
+
1664
+ if plot_diffusion_rows:
1665
+ # get diffusion row
1666
+ diffusion_row = list()
1667
+ z_start = z[:n_row]
1668
+ for t in range(self.num_timesteps):
1669
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1670
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1671
+ t = t.to(self.device).long()
1672
+ noise = torch.randn_like(z_start)
1673
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1674
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1675
+
1676
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1677
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1678
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1679
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1680
+ log["diffusion_row"] = diffusion_grid
1681
+
1682
+ if sample:
1683
+ # get denoise row
1684
+ with ema_scope("Sampling"):
1685
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1686
+ batch_size=N, ddim=use_ddim,
1687
+ ddim_steps=ddim_steps, eta=ddim_eta)
1688
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1689
+ x_samples = self.decode_first_stage(samples)
1690
+ log["samples"] = x_samples
1691
+ if plot_denoise_rows:
1692
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1693
+ log["denoise_row"] = denoise_grid
1694
+
1695
+ if unconditional_guidance_scale > 1.0:
1696
+ uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1697
+ uc_cat = c_cat
1698
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1699
+ with ema_scope("Sampling with classifier-free guidance"):
1700
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1701
+ batch_size=N, ddim=use_ddim,
1702
+ ddim_steps=ddim_steps, eta=ddim_eta,
1703
+ unconditional_guidance_scale=unconditional_guidance_scale,
1704
+ unconditional_conditioning=uc_full,
1705
+ )
1706
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1707
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1708
+
1709
+ return log
1710
+
1711
+
1712
+ class LatentInpaintDiffusion(LatentFinetuneDiffusion):
1713
+ """
1714
+ can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1715
+ e.g. mask as concat and text via cross-attn.
1716
+ To disable finetuning mode, set finetune_keys to None
1717
+ """
1718
+
1719
+ def __init__(self,
1720
+ concat_keys=("mask", "masked_image"),
1721
+ masked_image_key="masked_image",
1722
+ *args, **kwargs
1723
+ ):
1724
+ super().__init__(concat_keys, *args, **kwargs)
1725
+ self.masked_image_key = masked_image_key
1726
+ assert self.masked_image_key in concat_keys
1727
+
1728
+ @torch.no_grad()
1729
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1730
+ # note: restricted to non-trainable encoders currently
1731
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1732
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1733
+ force_c_encode=True, return_original_cond=True, bs=bs)
1734
+
1735
+ assert exists(self.concat_keys)
1736
+ c_cat = list()
1737
+ for ck in self.concat_keys:
1738
+ cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1739
+ if bs is not None:
1740
+ cc = cc[:bs]
1741
+ cc = cc.to(self.device)
1742
+ bchw = z.shape
1743
+ if ck != self.masked_image_key:
1744
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1745
+ else:
1746
+ cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1747
+ c_cat.append(cc)
1748
+ c_cat = torch.cat(c_cat, dim=1)
1749
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1750
+ if return_first_stage_outputs:
1751
+ return z, all_conds, x, xrec, xc
1752
+ return z, all_conds
1753
+
1754
+ @torch.no_grad()
1755
+ def log_images(self, *args, **kwargs):
1756
+ log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
1757
+ log["masked_image"] = rearrange(args[0]["masked_image"],
1758
+ 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1759
+ return log
1760
+
1761
+
1762
+ class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
1763
+ """
1764
+ condition on monocular depth estimation
1765
+ """
1766
+
1767
+ def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
1768
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
1769
+ self.depth_model = instantiate_from_config(depth_stage_config)
1770
+ self.depth_stage_key = concat_keys[0]
1771
+
1772
+ @torch.no_grad()
1773
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1774
+ # note: restricted to non-trainable encoders currently
1775
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
1776
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1777
+ force_c_encode=True, return_original_cond=True, bs=bs)
1778
+
1779
+ assert exists(self.concat_keys)
1780
+ assert len(self.concat_keys) == 1
1781
+ c_cat = list()
1782
+ for ck in self.concat_keys:
1783
+ cc = batch[ck]
1784
+ if bs is not None:
1785
+ cc = cc[:bs]
1786
+ cc = cc.to(self.device)
1787
+ cc = self.depth_model(cc)
1788
+ cc = torch.nn.functional.interpolate(
1789
+ cc,
1790
+ size=z.shape[2:],
1791
+ mode="bicubic",
1792
+ align_corners=False,
1793
+ )
1794
+
1795
+ depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
1796
+ keepdim=True)
1797
+ cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
1798
+ c_cat.append(cc)
1799
+ c_cat = torch.cat(c_cat, dim=1)
1800
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1801
+ if return_first_stage_outputs:
1802
+ return z, all_conds, x, xrec, xc
1803
+ return z, all_conds
1804
+
1805
+ @torch.no_grad()
1806
+ def log_images(self, *args, **kwargs):
1807
+ log = super().log_images(*args, **kwargs)
1808
+ depth = self.depth_model(args[0][self.depth_stage_key])
1809
+ depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
1810
+ torch.amax(depth, dim=[1, 2, 3], keepdim=True)
1811
+ log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
1812
+ return log
1813
+
1814
+
1815
+ class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
1816
+ """
1817
+ condition on low-res image (and optionally on some spatial noise augmentation)
1818
+ """
1819
+ def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
1820
+ low_scale_config=None, low_scale_key=None, *args, **kwargs):
1821
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
1822
+ self.reshuffle_patch_size = reshuffle_patch_size
1823
+ self.low_scale_model = None
1824
+ if low_scale_config is not None:
1825
+ print("Initializing a low-scale model")
1826
+ assert exists(low_scale_key)
1827
+ self.instantiate_low_stage(low_scale_config)
1828
+ self.low_scale_key = low_scale_key
1829
+
1830
+ def instantiate_low_stage(self, config):
1831
+ model = instantiate_from_config(config)
1832
+ self.low_scale_model = model.eval()
1833
+ self.low_scale_model.train = disabled_train
1834
+ for param in self.low_scale_model.parameters():
1835
+ param.requires_grad = False
1836
+
1837
+ @torch.no_grad()
1838
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1839
+ # note: restricted to non-trainable encoders currently
1840
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
1841
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1842
+ force_c_encode=True, return_original_cond=True, bs=bs)
1843
+
1844
+ assert exists(self.concat_keys)
1845
+ assert len(self.concat_keys) == 1
1846
+ # optionally make spatial noise_level here
1847
+ c_cat = list()
1848
+ noise_level = None
1849
+ for ck in self.concat_keys:
1850
+ cc = batch[ck]
1851
+ cc = rearrange(cc, 'b h w c -> b c h w')
1852
+ if exists(self.reshuffle_patch_size):
1853
+ assert isinstance(self.reshuffle_patch_size, int)
1854
+ cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
1855
+ p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
1856
+ if bs is not None:
1857
+ cc = cc[:bs]
1858
+ cc = cc.to(self.device)
1859
+ if exists(self.low_scale_model) and ck == self.low_scale_key:
1860
+ cc, noise_level = self.low_scale_model(cc)
1861
+ c_cat.append(cc)
1862
+ c_cat = torch.cat(c_cat, dim=1)
1863
+ if exists(noise_level):
1864
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
1865
+ else:
1866
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1867
+ if return_first_stage_outputs:
1868
+ return z, all_conds, x, xrec, xc
1869
+ return z, all_conds
1870
+
1871
+ @torch.no_grad()
1872
+ def log_images(self, *args, **kwargs):
1873
+ log = super().log_images(*args, **kwargs)
1874
+ log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
1875
+ return log
ldm/models/diffusion/dpm_solver/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .sampler import DPMSolverSampler
ldm/models/diffusion/dpm_solver/dpm_solver.py ADDED
@@ -0,0 +1,1154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import math
4
+ from tqdm import tqdm
5
+
6
+
7
+ class NoiseScheduleVP:
8
+ def __init__(
9
+ self,
10
+ schedule='discrete',
11
+ betas=None,
12
+ alphas_cumprod=None,
13
+ continuous_beta_0=0.1,
14
+ continuous_beta_1=20.,
15
+ ):
16
+ """Create a wrapper class for the forward SDE (VP type).
17
+ ***
18
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
+ ***
21
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
22
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
23
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
24
+ log_alpha_t = self.marginal_log_mean_coeff(t)
25
+ sigma_t = self.marginal_std(t)
26
+ lambda_t = self.marginal_lambda(t)
27
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
28
+ t = self.inverse_lambda(lambda_t)
29
+ ===============================================================
30
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
31
+ 1. For discrete-time DPMs:
32
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
33
+ t_i = (i + 1) / N
34
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
35
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
36
+ Args:
37
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
38
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
39
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
40
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
41
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
42
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
43
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
44
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
45
+ and
46
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
47
+ 2. For continuous-time DPMs:
48
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
49
+ schedule are the default settings in DDPM and improved-DDPM:
50
+ Args:
51
+ beta_min: A `float` number. The smallest beta for the linear schedule.
52
+ beta_max: A `float` number. The largest beta for the linear schedule.
53
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
54
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
55
+ T: A `float` number. The ending time of the forward process.
56
+ ===============================================================
57
+ Args:
58
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
59
+ 'linear' or 'cosine' for continuous-time DPMs.
60
+ Returns:
61
+ A wrapper object of the forward SDE (VP type).
62
+
63
+ ===============================================================
64
+ Example:
65
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
66
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
67
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
68
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
69
+ # For continuous-time DPMs (VPSDE), linear schedule:
70
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
71
+ """
72
+
73
+ if schedule not in ['discrete', 'linear', 'cosine']:
74
+ raise ValueError(
75
+ "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
76
+ schedule))
77
+
78
+ self.schedule = schedule
79
+ if schedule == 'discrete':
80
+ if betas is not None:
81
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
82
+ else:
83
+ assert alphas_cumprod is not None
84
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
85
+ self.total_N = len(log_alphas)
86
+ self.T = 1.
87
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
88
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
89
+ else:
90
+ self.total_N = 1000
91
+ self.beta_0 = continuous_beta_0
92
+ self.beta_1 = continuous_beta_1
93
+ self.cosine_s = 0.008
94
+ self.cosine_beta_max = 999.
95
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
96
+ 1. + self.cosine_s) / math.pi - self.cosine_s
97
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
98
+ self.schedule = schedule
99
+ if schedule == 'cosine':
100
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
101
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
102
+ self.T = 0.9946
103
+ else:
104
+ self.T = 1.
105
+
106
+ def marginal_log_mean_coeff(self, t):
107
+ """
108
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
109
+ """
110
+ if self.schedule == 'discrete':
111
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
112
+ self.log_alpha_array.to(t.device)).reshape((-1))
113
+ elif self.schedule == 'linear':
114
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
115
+ elif self.schedule == 'cosine':
116
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
117
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
118
+ return log_alpha_t
119
+
120
+ def marginal_alpha(self, t):
121
+ """
122
+ Compute alpha_t of a given continuous-time label t in [0, T].
123
+ """
124
+ return torch.exp(self.marginal_log_mean_coeff(t))
125
+
126
+ def marginal_std(self, t):
127
+ """
128
+ Compute sigma_t of a given continuous-time label t in [0, T].
129
+ """
130
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
131
+
132
+ def marginal_lambda(self, t):
133
+ """
134
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
135
+ """
136
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
137
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
138
+ return log_mean_coeff - log_std
139
+
140
+ def inverse_lambda(self, lamb):
141
+ """
142
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
143
+ """
144
+ if self.schedule == 'linear':
145
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
146
+ Delta = self.beta_0 ** 2 + tmp
147
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
148
+ elif self.schedule == 'discrete':
149
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
150
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
151
+ torch.flip(self.t_array.to(lamb.device), [1]))
152
+ return t.reshape((-1,))
153
+ else:
154
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
155
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
156
+ 1. + self.cosine_s) / math.pi - self.cosine_s
157
+ t = t_fn(log_alpha)
158
+ return t
159
+
160
+
161
+ def model_wrapper(
162
+ model,
163
+ noise_schedule,
164
+ model_type="noise",
165
+ model_kwargs={},
166
+ guidance_type="uncond",
167
+ condition=None,
168
+ unconditional_condition=None,
169
+ guidance_scale=1.,
170
+ classifier_fn=None,
171
+ classifier_kwargs={},
172
+ ):
173
+ """Create a wrapper function for the noise prediction model.
174
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
175
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
176
+ We support four types of the diffusion model by setting `model_type`:
177
+ 1. "noise": noise prediction model. (Trained by predicting noise).
178
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
179
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
180
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
181
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
182
+ arXiv preprint arXiv:2202.00512 (2022).
183
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
184
+ arXiv preprint arXiv:2210.02303 (2022).
185
+
186
+ 4. "score": marginal score function. (Trained by denoising score matching).
187
+ Note that the score function and the noise prediction model follows a simple relationship:
188
+ ```
189
+ noise(x_t, t) = -sigma_t * score(x_t, t)
190
+ ```
191
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
192
+ 1. "uncond": unconditional sampling by DPMs.
193
+ The input `model` has the following format:
194
+ ``
195
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
196
+ ``
197
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
198
+ The input `model` has the following format:
199
+ ``
200
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
201
+ ``
202
+ The input `classifier_fn` has the following format:
203
+ ``
204
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
205
+ ``
206
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
207
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
208
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
209
+ The input `model` has the following format:
210
+ ``
211
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
212
+ ``
213
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
214
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
215
+ arXiv preprint arXiv:2207.12598 (2022).
216
+
217
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
218
+ or continuous-time labels (i.e. epsilon to T).
219
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
220
+ ``
221
+ def model_fn(x, t_continuous) -> noise:
222
+ t_input = get_model_input_time(t_continuous)
223
+ return noise_pred(model, x, t_input, **model_kwargs)
224
+ ``
225
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
226
+ ===============================================================
227
+ Args:
228
+ model: A diffusion model with the corresponding format described above.
229
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
230
+ model_type: A `str`. The parameterization type of the diffusion model.
231
+ "noise" or "x_start" or "v" or "score".
232
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
233
+ guidance_type: A `str`. The type of the guidance for sampling.
234
+ "uncond" or "classifier" or "classifier-free".
235
+ condition: A pytorch tensor. The condition for the guided sampling.
236
+ Only used for "classifier" or "classifier-free" guidance type.
237
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
238
+ Only used for "classifier-free" guidance type.
239
+ guidance_scale: A `float`. The scale for the guided sampling.
240
+ classifier_fn: A classifier function. Only used for the classifier guidance.
241
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
242
+ Returns:
243
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
244
+ """
245
+
246
+ def get_model_input_time(t_continuous):
247
+ """
248
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
249
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
250
+ For continuous-time DPMs, we just use `t_continuous`.
251
+ """
252
+ if noise_schedule.schedule == 'discrete':
253
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
254
+ else:
255
+ return t_continuous
256
+
257
+ def noise_pred_fn(x, t_continuous, cond=None):
258
+ if t_continuous.reshape((-1,)).shape[0] == 1:
259
+ t_continuous = t_continuous.expand((x.shape[0]))
260
+ t_input = get_model_input_time(t_continuous)
261
+ if cond is None:
262
+ output = model(x, t_input, **model_kwargs)
263
+ else:
264
+ output = model(x, t_input, cond, **model_kwargs)
265
+ if model_type == "noise":
266
+ return output
267
+ elif model_type == "x_start":
268
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
269
+ dims = x.dim()
270
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
271
+ elif model_type == "v":
272
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
273
+ dims = x.dim()
274
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
275
+ elif model_type == "score":
276
+ sigma_t = noise_schedule.marginal_std(t_continuous)
277
+ dims = x.dim()
278
+ return -expand_dims(sigma_t, dims) * output
279
+
280
+ def cond_grad_fn(x, t_input):
281
+ """
282
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
283
+ """
284
+ with torch.enable_grad():
285
+ x_in = x.detach().requires_grad_(True)
286
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
287
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
288
+
289
+ def model_fn(x, t_continuous):
290
+ """
291
+ The noise predicition model function that is used for DPM-Solver.
292
+ """
293
+ if t_continuous.reshape((-1,)).shape[0] == 1:
294
+ t_continuous = t_continuous.expand((x.shape[0]))
295
+ if guidance_type == "uncond":
296
+ return noise_pred_fn(x, t_continuous)
297
+ elif guidance_type == "classifier":
298
+ assert classifier_fn is not None
299
+ t_input = get_model_input_time(t_continuous)
300
+ cond_grad = cond_grad_fn(x, t_input)
301
+ sigma_t = noise_schedule.marginal_std(t_continuous)
302
+ noise = noise_pred_fn(x, t_continuous)
303
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
304
+ elif guidance_type == "classifier-free":
305
+ if guidance_scale == 1. or unconditional_condition is None:
306
+ return noise_pred_fn(x, t_continuous, cond=condition)
307
+ else:
308
+ x_in = torch.cat([x] * 2)
309
+ t_in = torch.cat([t_continuous] * 2)
310
+ c_in = torch.cat([unconditional_condition, condition])
311
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
312
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
313
+
314
+ assert model_type in ["noise", "x_start", "v"]
315
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
316
+ return model_fn
317
+
318
+
319
+ class DPM_Solver:
320
+ def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
321
+ """Construct a DPM-Solver.
322
+ We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
323
+ If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
324
+ If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
325
+ In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
326
+ The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
327
+ Args:
328
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
329
+ ``
330
+ def model_fn(x, t_continuous):
331
+ return noise
332
+ ``
333
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
334
+ predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
335
+ thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
336
+ max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
337
+
338
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
339
+ """
340
+ self.model = model_fn
341
+ self.noise_schedule = noise_schedule
342
+ self.predict_x0 = predict_x0
343
+ self.thresholding = thresholding
344
+ self.max_val = max_val
345
+
346
+ def noise_prediction_fn(self, x, t):
347
+ """
348
+ Return the noise prediction model.
349
+ """
350
+ return self.model(x, t)
351
+
352
+ def data_prediction_fn(self, x, t):
353
+ """
354
+ Return the data prediction model (with thresholding).
355
+ """
356
+ noise = self.noise_prediction_fn(x, t)
357
+ dims = x.dim()
358
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
359
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
360
+ if self.thresholding:
361
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
362
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
363
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
364
+ x0 = torch.clamp(x0, -s, s) / s
365
+ return x0
366
+
367
+ def model_fn(self, x, t):
368
+ """
369
+ Convert the model to the noise prediction model or the data prediction model.
370
+ """
371
+ if self.predict_x0:
372
+ return self.data_prediction_fn(x, t)
373
+ else:
374
+ return self.noise_prediction_fn(x, t)
375
+
376
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
377
+ """Compute the intermediate time steps for sampling.
378
+ Args:
379
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
380
+ - 'logSNR': uniform logSNR for the time steps.
381
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
382
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
383
+ t_T: A `float`. The starting time of the sampling (default is T).
384
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
385
+ N: A `int`. The total number of the spacing of the time steps.
386
+ device: A torch device.
387
+ Returns:
388
+ A pytorch tensor of the time steps, with the shape (N + 1,).
389
+ """
390
+ if skip_type == 'logSNR':
391
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
392
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
393
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
394
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
395
+ elif skip_type == 'time_uniform':
396
+ return torch.linspace(t_T, t_0, N + 1).to(device)
397
+ elif skip_type == 'time_quadratic':
398
+ t_order = 2
399
+ t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
400
+ return t
401
+ else:
402
+ raise ValueError(
403
+ "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
404
+
405
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
406
+ """
407
+ Get the order of each step for sampling by the singlestep DPM-Solver.
408
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
409
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
410
+ - If order == 1:
411
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
412
+ - If order == 2:
413
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
414
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
415
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
416
+ - If order == 3:
417
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
418
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
419
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
420
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
421
+ ============================================
422
+ Args:
423
+ order: A `int`. The max order for the solver (2 or 3).
424
+ steps: A `int`. The total number of function evaluations (NFE).
425
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
426
+ - 'logSNR': uniform logSNR for the time steps.
427
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
428
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
429
+ t_T: A `float`. The starting time of the sampling (default is T).
430
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
431
+ device: A torch device.
432
+ Returns:
433
+ orders: A list of the solver order of each step.
434
+ """
435
+ if order == 3:
436
+ K = steps // 3 + 1
437
+ if steps % 3 == 0:
438
+ orders = [3, ] * (K - 2) + [2, 1]
439
+ elif steps % 3 == 1:
440
+ orders = [3, ] * (K - 1) + [1]
441
+ else:
442
+ orders = [3, ] * (K - 1) + [2]
443
+ elif order == 2:
444
+ if steps % 2 == 0:
445
+ K = steps // 2
446
+ orders = [2, ] * K
447
+ else:
448
+ K = steps // 2 + 1
449
+ orders = [2, ] * (K - 1) + [1]
450
+ elif order == 1:
451
+ K = 1
452
+ orders = [1, ] * steps
453
+ else:
454
+ raise ValueError("'order' must be '1' or '2' or '3'.")
455
+ if skip_type == 'logSNR':
456
+ # To reproduce the results in DPM-Solver paper
457
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
458
+ else:
459
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
460
+ torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
461
+ return timesteps_outer, orders
462
+
463
+ def denoise_to_zero_fn(self, x, s):
464
+ """
465
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
466
+ """
467
+ return self.data_prediction_fn(x, s)
468
+
469
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
470
+ """
471
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
472
+ Args:
473
+ x: A pytorch tensor. The initial value at time `s`.
474
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
475
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
476
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
477
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
478
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
479
+ Returns:
480
+ x_t: A pytorch tensor. The approximated solution at time `t`.
481
+ """
482
+ ns = self.noise_schedule
483
+ dims = x.dim()
484
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
485
+ h = lambda_t - lambda_s
486
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
487
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
488
+ alpha_t = torch.exp(log_alpha_t)
489
+
490
+ if self.predict_x0:
491
+ phi_1 = torch.expm1(-h)
492
+ if model_s is None:
493
+ model_s = self.model_fn(x, s)
494
+ x_t = (
495
+ expand_dims(sigma_t / sigma_s, dims) * x
496
+ - expand_dims(alpha_t * phi_1, dims) * model_s
497
+ )
498
+ if return_intermediate:
499
+ return x_t, {'model_s': model_s}
500
+ else:
501
+ return x_t
502
+ else:
503
+ phi_1 = torch.expm1(h)
504
+ if model_s is None:
505
+ model_s = self.model_fn(x, s)
506
+ x_t = (
507
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
508
+ - expand_dims(sigma_t * phi_1, dims) * model_s
509
+ )
510
+ if return_intermediate:
511
+ return x_t, {'model_s': model_s}
512
+ else:
513
+ return x_t
514
+
515
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
516
+ solver_type='dpm_solver'):
517
+ """
518
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
519
+ Args:
520
+ x: A pytorch tensor. The initial value at time `s`.
521
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
522
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
523
+ r1: A `float`. The hyperparameter of the second-order solver.
524
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
525
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
526
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
527
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
528
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
529
+ Returns:
530
+ x_t: A pytorch tensor. The approximated solution at time `t`.
531
+ """
532
+ if solver_type not in ['dpm_solver', 'taylor']:
533
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
534
+ if r1 is None:
535
+ r1 = 0.5
536
+ ns = self.noise_schedule
537
+ dims = x.dim()
538
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
539
+ h = lambda_t - lambda_s
540
+ lambda_s1 = lambda_s + r1 * h
541
+ s1 = ns.inverse_lambda(lambda_s1)
542
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
543
+ s1), ns.marginal_log_mean_coeff(t)
544
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
545
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
546
+
547
+ if self.predict_x0:
548
+ phi_11 = torch.expm1(-r1 * h)
549
+ phi_1 = torch.expm1(-h)
550
+
551
+ if model_s is None:
552
+ model_s = self.model_fn(x, s)
553
+ x_s1 = (
554
+ expand_dims(sigma_s1 / sigma_s, dims) * x
555
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
556
+ )
557
+ model_s1 = self.model_fn(x_s1, s1)
558
+ if solver_type == 'dpm_solver':
559
+ x_t = (
560
+ expand_dims(sigma_t / sigma_s, dims) * x
561
+ - expand_dims(alpha_t * phi_1, dims) * model_s
562
+ - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
563
+ )
564
+ elif solver_type == 'taylor':
565
+ x_t = (
566
+ expand_dims(sigma_t / sigma_s, dims) * x
567
+ - expand_dims(alpha_t * phi_1, dims) * model_s
568
+ + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
569
+ model_s1 - model_s)
570
+ )
571
+ else:
572
+ phi_11 = torch.expm1(r1 * h)
573
+ phi_1 = torch.expm1(h)
574
+
575
+ if model_s is None:
576
+ model_s = self.model_fn(x, s)
577
+ x_s1 = (
578
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
579
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
580
+ )
581
+ model_s1 = self.model_fn(x_s1, s1)
582
+ if solver_type == 'dpm_solver':
583
+ x_t = (
584
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
585
+ - expand_dims(sigma_t * phi_1, dims) * model_s
586
+ - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
587
+ )
588
+ elif solver_type == 'taylor':
589
+ x_t = (
590
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
591
+ - expand_dims(sigma_t * phi_1, dims) * model_s
592
+ - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
593
+ )
594
+ if return_intermediate:
595
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
596
+ else:
597
+ return x_t
598
+
599
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
600
+ return_intermediate=False, solver_type='dpm_solver'):
601
+ """
602
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
603
+ Args:
604
+ x: A pytorch tensor. The initial value at time `s`.
605
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
606
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
607
+ r1: A `float`. The hyperparameter of the third-order solver.
608
+ r2: A `float`. The hyperparameter of the third-order solver.
609
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
610
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
611
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
612
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
613
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
614
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
615
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
616
+ Returns:
617
+ x_t: A pytorch tensor. The approximated solution at time `t`.
618
+ """
619
+ if solver_type not in ['dpm_solver', 'taylor']:
620
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
621
+ if r1 is None:
622
+ r1 = 1. / 3.
623
+ if r2 is None:
624
+ r2 = 2. / 3.
625
+ ns = self.noise_schedule
626
+ dims = x.dim()
627
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
628
+ h = lambda_t - lambda_s
629
+ lambda_s1 = lambda_s + r1 * h
630
+ lambda_s2 = lambda_s + r2 * h
631
+ s1 = ns.inverse_lambda(lambda_s1)
632
+ s2 = ns.inverse_lambda(lambda_s2)
633
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
634
+ s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
635
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
636
+ s2), ns.marginal_std(t)
637
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
638
+
639
+ if self.predict_x0:
640
+ phi_11 = torch.expm1(-r1 * h)
641
+ phi_12 = torch.expm1(-r2 * h)
642
+ phi_1 = torch.expm1(-h)
643
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
644
+ phi_2 = phi_1 / h + 1.
645
+ phi_3 = phi_2 / h - 0.5
646
+
647
+ if model_s is None:
648
+ model_s = self.model_fn(x, s)
649
+ if model_s1 is None:
650
+ x_s1 = (
651
+ expand_dims(sigma_s1 / sigma_s, dims) * x
652
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
653
+ )
654
+ model_s1 = self.model_fn(x_s1, s1)
655
+ x_s2 = (
656
+ expand_dims(sigma_s2 / sigma_s, dims) * x
657
+ - expand_dims(alpha_s2 * phi_12, dims) * model_s
658
+ + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
659
+ )
660
+ model_s2 = self.model_fn(x_s2, s2)
661
+ if solver_type == 'dpm_solver':
662
+ x_t = (
663
+ expand_dims(sigma_t / sigma_s, dims) * x
664
+ - expand_dims(alpha_t * phi_1, dims) * model_s
665
+ + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
666
+ )
667
+ elif solver_type == 'taylor':
668
+ D1_0 = (1. / r1) * (model_s1 - model_s)
669
+ D1_1 = (1. / r2) * (model_s2 - model_s)
670
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
671
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
672
+ x_t = (
673
+ expand_dims(sigma_t / sigma_s, dims) * x
674
+ - expand_dims(alpha_t * phi_1, dims) * model_s
675
+ + expand_dims(alpha_t * phi_2, dims) * D1
676
+ - expand_dims(alpha_t * phi_3, dims) * D2
677
+ )
678
+ else:
679
+ phi_11 = torch.expm1(r1 * h)
680
+ phi_12 = torch.expm1(r2 * h)
681
+ phi_1 = torch.expm1(h)
682
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
683
+ phi_2 = phi_1 / h - 1.
684
+ phi_3 = phi_2 / h - 0.5
685
+
686
+ if model_s is None:
687
+ model_s = self.model_fn(x, s)
688
+ if model_s1 is None:
689
+ x_s1 = (
690
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
691
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
692
+ )
693
+ model_s1 = self.model_fn(x_s1, s1)
694
+ x_s2 = (
695
+ expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
696
+ - expand_dims(sigma_s2 * phi_12, dims) * model_s
697
+ - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
698
+ )
699
+ model_s2 = self.model_fn(x_s2, s2)
700
+ if solver_type == 'dpm_solver':
701
+ x_t = (
702
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
703
+ - expand_dims(sigma_t * phi_1, dims) * model_s
704
+ - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
705
+ )
706
+ elif solver_type == 'taylor':
707
+ D1_0 = (1. / r1) * (model_s1 - model_s)
708
+ D1_1 = (1. / r2) * (model_s2 - model_s)
709
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
710
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
711
+ x_t = (
712
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
713
+ - expand_dims(sigma_t * phi_1, dims) * model_s
714
+ - expand_dims(sigma_t * phi_2, dims) * D1
715
+ - expand_dims(sigma_t * phi_3, dims) * D2
716
+ )
717
+
718
+ if return_intermediate:
719
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
720
+ else:
721
+ return x_t
722
+
723
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
724
+ """
725
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
726
+ Args:
727
+ x: A pytorch tensor. The initial value at time `s`.
728
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
729
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
730
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
731
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
732
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
733
+ Returns:
734
+ x_t: A pytorch tensor. The approximated solution at time `t`.
735
+ """
736
+ if solver_type not in ['dpm_solver', 'taylor']:
737
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
738
+ ns = self.noise_schedule
739
+ dims = x.dim()
740
+ model_prev_1, model_prev_0 = model_prev_list
741
+ t_prev_1, t_prev_0 = t_prev_list
742
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
743
+ t_prev_0), ns.marginal_lambda(t)
744
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
745
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
746
+ alpha_t = torch.exp(log_alpha_t)
747
+
748
+ h_0 = lambda_prev_0 - lambda_prev_1
749
+ h = lambda_t - lambda_prev_0
750
+ r0 = h_0 / h
751
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
752
+ if self.predict_x0:
753
+ if solver_type == 'dpm_solver':
754
+ x_t = (
755
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
756
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
757
+ - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
758
+ )
759
+ elif solver_type == 'taylor':
760
+ x_t = (
761
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
762
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
763
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
764
+ )
765
+ else:
766
+ if solver_type == 'dpm_solver':
767
+ x_t = (
768
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
769
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
770
+ - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
771
+ )
772
+ elif solver_type == 'taylor':
773
+ x_t = (
774
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
775
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
776
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
777
+ )
778
+ return x_t
779
+
780
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
781
+ """
782
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
783
+ Args:
784
+ x: A pytorch tensor. The initial value at time `s`.
785
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
786
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
787
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
788
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
789
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
790
+ Returns:
791
+ x_t: A pytorch tensor. The approximated solution at time `t`.
792
+ """
793
+ ns = self.noise_schedule
794
+ dims = x.dim()
795
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
796
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
797
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
798
+ t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
799
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
800
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
801
+ alpha_t = torch.exp(log_alpha_t)
802
+
803
+ h_1 = lambda_prev_1 - lambda_prev_2
804
+ h_0 = lambda_prev_0 - lambda_prev_1
805
+ h = lambda_t - lambda_prev_0
806
+ r0, r1 = h_0 / h, h_1 / h
807
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
808
+ D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
809
+ D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
810
+ D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
811
+ if self.predict_x0:
812
+ x_t = (
813
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
814
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
815
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
816
+ - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
817
+ )
818
+ else:
819
+ x_t = (
820
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
821
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
822
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
823
+ - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
824
+ )
825
+ return x_t
826
+
827
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
828
+ r2=None):
829
+ """
830
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
831
+ Args:
832
+ x: A pytorch tensor. The initial value at time `s`.
833
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
834
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
835
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
836
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
837
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
838
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
839
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
840
+ r2: A `float`. The hyperparameter of the third-order solver.
841
+ Returns:
842
+ x_t: A pytorch tensor. The approximated solution at time `t`.
843
+ """
844
+ if order == 1:
845
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
846
+ elif order == 2:
847
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
848
+ solver_type=solver_type, r1=r1)
849
+ elif order == 3:
850
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
851
+ solver_type=solver_type, r1=r1, r2=r2)
852
+ else:
853
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
854
+
855
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
856
+ """
857
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
858
+ Args:
859
+ x: A pytorch tensor. The initial value at time `s`.
860
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
861
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
862
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
863
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
864
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
865
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
866
+ Returns:
867
+ x_t: A pytorch tensor. The approximated solution at time `t`.
868
+ """
869
+ if order == 1:
870
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
871
+ elif order == 2:
872
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
873
+ elif order == 3:
874
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
875
+ else:
876
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
877
+
878
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
879
+ solver_type='dpm_solver'):
880
+ """
881
+ The adaptive step size solver based on singlestep DPM-Solver.
882
+ Args:
883
+ x: A pytorch tensor. The initial value at time `t_T`.
884
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
885
+ t_T: A `float`. The starting time of the sampling (default is T).
886
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
887
+ h_init: A `float`. The initial step size (for logSNR).
888
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
889
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
890
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
891
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
892
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
893
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
894
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
895
+ Returns:
896
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
897
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
898
+ """
899
+ ns = self.noise_schedule
900
+ s = t_T * torch.ones((x.shape[0],)).to(x)
901
+ lambda_s = ns.marginal_lambda(s)
902
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
903
+ h = h_init * torch.ones_like(s).to(x)
904
+ x_prev = x
905
+ nfe = 0
906
+ if order == 2:
907
+ r1 = 0.5
908
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
909
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
910
+ solver_type=solver_type,
911
+ **kwargs)
912
+ elif order == 3:
913
+ r1, r2 = 1. / 3., 2. / 3.
914
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
915
+ return_intermediate=True,
916
+ solver_type=solver_type)
917
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
918
+ solver_type=solver_type,
919
+ **kwargs)
920
+ else:
921
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
922
+ while torch.abs((s - t_0)).mean() > t_err:
923
+ t = ns.inverse_lambda(lambda_s + h)
924
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
925
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
926
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
927
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
928
+ E = norm_fn((x_higher - x_lower) / delta).max()
929
+ if torch.all(E <= 1.):
930
+ x = x_higher
931
+ s = t
932
+ x_prev = x_lower
933
+ lambda_s = ns.marginal_lambda(s)
934
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
935
+ nfe += order
936
+ print('adaptive solver nfe', nfe)
937
+ return x
938
+
939
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
940
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
941
+ atol=0.0078, rtol=0.05,
942
+ ):
943
+ """
944
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
945
+ =====================================================
946
+ We support the following algorithms for both noise prediction model and data prediction model:
947
+ - 'singlestep':
948
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
949
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
950
+ The total number of function evaluations (NFE) == `steps`.
951
+ Given a fixed NFE == `steps`, the sampling procedure is:
952
+ - If `order` == 1:
953
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
954
+ - If `order` == 2:
955
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
956
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
957
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
958
+ - If `order` == 3:
959
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
960
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
961
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
962
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
963
+ - 'multistep':
964
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
965
+ We initialize the first `order` values by lower order multistep solvers.
966
+ Given a fixed NFE == `steps`, the sampling procedure is:
967
+ Denote K = steps.
968
+ - If `order` == 1:
969
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
970
+ - If `order` == 2:
971
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
972
+ - If `order` == 3:
973
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
974
+ - 'singlestep_fixed':
975
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
976
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
977
+ - 'adaptive':
978
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
979
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
980
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
981
+ (NFE) and the sample quality.
982
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
983
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
984
+ =====================================================
985
+ Some advices for choosing the algorithm:
986
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
987
+ Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
988
+ e.g.
989
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
990
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
991
+ skip_type='time_uniform', method='singlestep')
992
+ - For **guided sampling with large guidance scale** by DPMs:
993
+ Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
994
+ e.g.
995
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
996
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
997
+ skip_type='time_uniform', method='multistep')
998
+ We support three types of `skip_type`:
999
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1000
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1001
+ - 'time_quadratic': quadratic time for the time steps.
1002
+ =====================================================
1003
+ Args:
1004
+ x: A pytorch tensor. The initial value at time `t_start`
1005
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1006
+ steps: A `int`. The total number of function evaluations (NFE).
1007
+ t_start: A `float`. The starting time of the sampling.
1008
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
1009
+ t_end: A `float`. The ending time of the sampling.
1010
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1011
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
1012
+ For discrete-time DPMs:
1013
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1014
+ For continuous-time DPMs:
1015
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1016
+ order: A `int`. The order of DPM-Solver.
1017
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1018
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1019
+ denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
1020
+ Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
1021
+ This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
1022
+ score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
1023
+ for diffusion models sampling by diffusion SDEs for low-resolutional images
1024
+ (such as CIFAR-10). However, we observed that such trick does not matter for
1025
+ high-resolutional images. As it needs an additional NFE, we do not recommend
1026
+ it for high-resolutional images.
1027
+ lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
1028
+ Only valid for `method=multistep` and `steps < 15`. We empirically find that
1029
+ this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
1030
+ (especially for steps <= 10). So we recommend to set it to be `True`.
1031
+ solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
1032
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1033
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1034
+ Returns:
1035
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
1036
+ """
1037
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1038
+ t_T = self.noise_schedule.T if t_start is None else t_start
1039
+ device = x.device
1040
+ if method == 'adaptive':
1041
+ with torch.no_grad():
1042
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
1043
+ solver_type=solver_type)
1044
+ elif method == 'multistep':
1045
+ assert steps >= order
1046
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1047
+ assert timesteps.shape[0] - 1 == steps
1048
+ with torch.no_grad():
1049
+ vec_t = timesteps[0].expand((x.shape[0]))
1050
+ model_prev_list = [self.model_fn(x, vec_t)]
1051
+ t_prev_list = [vec_t]
1052
+ # Init the first `order` values by lower order multistep DPM-Solver.
1053
+ for init_order in tqdm(range(1, order), desc="DPM init order"):
1054
+ vec_t = timesteps[init_order].expand(x.shape[0])
1055
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
1056
+ solver_type=solver_type)
1057
+ model_prev_list.append(self.model_fn(x, vec_t))
1058
+ t_prev_list.append(vec_t)
1059
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
1060
+ for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
1061
+ vec_t = timesteps[step].expand(x.shape[0])
1062
+ if lower_order_final and steps < 15:
1063
+ step_order = min(order, steps + 1 - step)
1064
+ else:
1065
+ step_order = order
1066
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
1067
+ solver_type=solver_type)
1068
+ for i in range(order - 1):
1069
+ t_prev_list[i] = t_prev_list[i + 1]
1070
+ model_prev_list[i] = model_prev_list[i + 1]
1071
+ t_prev_list[-1] = vec_t
1072
+ # We do not need to evaluate the final model value.
1073
+ if step < steps:
1074
+ model_prev_list[-1] = self.model_fn(x, vec_t)
1075
+ elif method in ['singlestep', 'singlestep_fixed']:
1076
+ if method == 'singlestep':
1077
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
1078
+ skip_type=skip_type,
1079
+ t_T=t_T, t_0=t_0,
1080
+ device=device)
1081
+ elif method == 'singlestep_fixed':
1082
+ K = steps // order
1083
+ orders = [order, ] * K
1084
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1085
+ for i, order in enumerate(orders):
1086
+ t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
1087
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
1088
+ N=order, device=device)
1089
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1090
+ vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
1091
+ h = lambda_inner[-1] - lambda_inner[0]
1092
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1093
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1094
+ x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
1095
+ if denoise_to_zero:
1096
+ x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
1097
+ return x
1098
+
1099
+
1100
+ #############################################################
1101
+ # other utility functions
1102
+ #############################################################
1103
+
1104
+ def interpolate_fn(x, xp, yp):
1105
+ """
1106
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
1107
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
1108
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1109
+ Args:
1110
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1111
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1112
+ yp: PyTorch tensor with shape [C, K].
1113
+ Returns:
1114
+ The function values f(x), with shape [N, C].
1115
+ """
1116
+ N, K = x.shape[0], xp.shape[1]
1117
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1118
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1119
+ x_idx = torch.argmin(x_indices, dim=2)
1120
+ cand_start_idx = x_idx - 1
1121
+ start_idx = torch.where(
1122
+ torch.eq(x_idx, 0),
1123
+ torch.tensor(1, device=x.device),
1124
+ torch.where(
1125
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1126
+ ),
1127
+ )
1128
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1129
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1130
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1131
+ start_idx2 = torch.where(
1132
+ torch.eq(x_idx, 0),
1133
+ torch.tensor(0, device=x.device),
1134
+ torch.where(
1135
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1136
+ ),
1137
+ )
1138
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1139
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1140
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1141
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1142
+ return cand
1143
+
1144
+
1145
+ def expand_dims(v, dims):
1146
+ """
1147
+ Expand the tensor `v` to the dim `dims`.
1148
+ Args:
1149
+ `v`: a PyTorch tensor with shape [N].
1150
+ `dim`: a `int`.
1151
+ Returns:
1152
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1153
+ """
1154
+ return v[(...,) + (None,) * (dims - 1)]
ldm/models/diffusion/dpm_solver/sampler.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+ import torch
3
+
4
+ from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
5
+
6
+
7
+ MODEL_TYPES = {
8
+ "eps": "noise",
9
+ "v": "v"
10
+ }
11
+
12
+
13
+ class DPMSolverSampler(object):
14
+ def __init__(self, model, **kwargs):
15
+ super().__init__()
16
+ self.model = model
17
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
18
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
19
+
20
+ def register_buffer(self, name, attr):
21
+ if type(attr) == torch.Tensor:
22
+ if attr.device != torch.device("cuda"):
23
+ attr = attr.to(torch.device("cuda"))
24
+ setattr(self, name, attr)
25
+
26
+ @torch.no_grad()
27
+ def sample(self,
28
+ S,
29
+ batch_size,
30
+ shape,
31
+ conditioning=None,
32
+ callback=None,
33
+ normals_sequence=None,
34
+ img_callback=None,
35
+ quantize_x0=False,
36
+ eta=0.,
37
+ mask=None,
38
+ x0=None,
39
+ temperature=1.,
40
+ noise_dropout=0.,
41
+ score_corrector=None,
42
+ corrector_kwargs=None,
43
+ verbose=True,
44
+ x_T=None,
45
+ log_every_t=100,
46
+ unconditional_guidance_scale=1.,
47
+ unconditional_conditioning=None,
48
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
49
+ **kwargs
50
+ ):
51
+ if conditioning is not None:
52
+ if isinstance(conditioning, dict):
53
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
54
+ if cbs != batch_size:
55
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
56
+ else:
57
+ if conditioning.shape[0] != batch_size:
58
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
59
+
60
+ # sampling
61
+ C, H, W = shape
62
+ size = (batch_size, C, H, W)
63
+
64
+ print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
65
+
66
+ device = self.model.betas.device
67
+ if x_T is None:
68
+ img = torch.randn(size, device=device)
69
+ else:
70
+ img = x_T
71
+
72
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
73
+
74
+ model_fn = model_wrapper(
75
+ lambda x, t, c: self.model.apply_model(x, t, c),
76
+ ns,
77
+ model_type=MODEL_TYPES[self.model.parameterization],
78
+ guidance_type="classifier-free",
79
+ condition=conditioning,
80
+ unconditional_condition=unconditional_conditioning,
81
+ guidance_scale=unconditional_guidance_scale,
82
+ )
83
+
84
+ dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
85
+ x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
86
+
87
+ return x.to(device), None
ldm/models/diffusion/plms.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
+ from ldm.models.diffusion.sampling_util import norm_thresholding
10
+
11
+
12
+ class PLMSSampler(object):
13
+ def __init__(self, model, schedule="linear", **kwargs):
14
+ super().__init__()
15
+ self.model = model
16
+ self.ddpm_num_timesteps = model.num_timesteps
17
+ self.schedule = schedule
18
+
19
+ def register_buffer(self, name, attr):
20
+ if type(attr) == torch.Tensor:
21
+ if attr.device != torch.device("cuda"):
22
+ attr = attr.to(torch.device("cuda"))
23
+ setattr(self, name, attr)
24
+
25
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
26
+ if ddim_eta != 0:
27
+ raise ValueError('ddim_eta must be 0 for PLMS')
28
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
29
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
30
+ alphas_cumprod = self.model.alphas_cumprod
31
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
32
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
33
+
34
+ self.register_buffer('betas', to_torch(self.model.betas))
35
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
36
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
37
+
38
+ # calculations for diffusion q(x_t | x_{t-1}) and others
39
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
40
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
41
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
42
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
43
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
44
+
45
+ # ddim sampling parameters
46
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
47
+ ddim_timesteps=self.ddim_timesteps,
48
+ eta=ddim_eta,verbose=verbose)
49
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
50
+ self.register_buffer('ddim_alphas', ddim_alphas)
51
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
52
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
53
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
54
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
55
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
56
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
57
+
58
+ @torch.no_grad()
59
+ def sample(self,
60
+ S,
61
+ batch_size,
62
+ shape,
63
+ conditioning=None,
64
+ callback=None,
65
+ normals_sequence=None,
66
+ img_callback=None,
67
+ quantize_x0=False,
68
+ eta=0.,
69
+ mask=None,
70
+ x0=None,
71
+ temperature=1.,
72
+ noise_dropout=0.,
73
+ score_corrector=None,
74
+ corrector_kwargs=None,
75
+ verbose=True,
76
+ x_T=None,
77
+ log_every_t=100,
78
+ unconditional_guidance_scale=1.,
79
+ unconditional_conditioning=None,
80
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
81
+ dynamic_threshold=None,
82
+ **kwargs
83
+ ):
84
+ if conditioning is not None:
85
+ if isinstance(conditioning, dict):
86
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
87
+ if cbs != batch_size:
88
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
89
+ else:
90
+ if conditioning.shape[0] != batch_size:
91
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
92
+
93
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
94
+ # sampling
95
+ C, H, W = shape
96
+ size = (batch_size, C, H, W)
97
+ print(f'Data shape for PLMS sampling is {size}')
98
+
99
+ samples, intermediates = self.plms_sampling(conditioning, size,
100
+ callback=callback,
101
+ img_callback=img_callback,
102
+ quantize_denoised=quantize_x0,
103
+ mask=mask, x0=x0,
104
+ ddim_use_original_steps=False,
105
+ noise_dropout=noise_dropout,
106
+ temperature=temperature,
107
+ score_corrector=score_corrector,
108
+ corrector_kwargs=corrector_kwargs,
109
+ x_T=x_T,
110
+ log_every_t=log_every_t,
111
+ unconditional_guidance_scale=unconditional_guidance_scale,
112
+ unconditional_conditioning=unconditional_conditioning,
113
+ dynamic_threshold=dynamic_threshold,
114
+ )
115
+ return samples, intermediates
116
+
117
+ @torch.no_grad()
118
+ def plms_sampling(self, cond, shape,
119
+ x_T=None, ddim_use_original_steps=False,
120
+ callback=None, timesteps=None, quantize_denoised=False,
121
+ mask=None, x0=None, img_callback=None, log_every_t=100,
122
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
123
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
124
+ dynamic_threshold=None):
125
+ device = self.model.betas.device
126
+ b = shape[0]
127
+ if x_T is None:
128
+ img = torch.randn(shape, device=device)
129
+ else:
130
+ img = x_T
131
+
132
+ if timesteps is None:
133
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
134
+ elif timesteps is not None and not ddim_use_original_steps:
135
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
136
+ timesteps = self.ddim_timesteps[:subset_end]
137
+
138
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
139
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
140
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
141
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
142
+
143
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
144
+ old_eps = []
145
+
146
+ for i, step in enumerate(iterator):
147
+ index = total_steps - i - 1
148
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
149
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
150
+
151
+ if mask is not None:
152
+ assert x0 is not None
153
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
154
+ img = img_orig * mask + (1. - mask) * img
155
+
156
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
157
+ quantize_denoised=quantize_denoised, temperature=temperature,
158
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
159
+ corrector_kwargs=corrector_kwargs,
160
+ unconditional_guidance_scale=unconditional_guidance_scale,
161
+ unconditional_conditioning=unconditional_conditioning,
162
+ old_eps=old_eps, t_next=ts_next,
163
+ dynamic_threshold=dynamic_threshold)
164
+ img, pred_x0, e_t = outs
165
+ old_eps.append(e_t)
166
+ if len(old_eps) >= 4:
167
+ old_eps.pop(0)
168
+ if callback: callback(i)
169
+ if img_callback: img_callback(pred_x0, i)
170
+
171
+ if index % log_every_t == 0 or index == total_steps - 1:
172
+ intermediates['x_inter'].append(img)
173
+ intermediates['pred_x0'].append(pred_x0)
174
+
175
+ return img, intermediates
176
+
177
+ @torch.no_grad()
178
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
179
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
180
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
181
+ dynamic_threshold=None):
182
+ b, *_, device = *x.shape, x.device
183
+
184
+ def get_model_output(x, t):
185
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
186
+ e_t = self.model.apply_model(x, t, c)
187
+ else:
188
+ x_in = torch.cat([x] * 2)
189
+ t_in = torch.cat([t] * 2)
190
+ c_in = torch.cat([unconditional_conditioning, c])
191
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
192
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
193
+
194
+ if score_corrector is not None:
195
+ assert self.model.parameterization == "eps"
196
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
197
+
198
+ return e_t
199
+
200
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
201
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
202
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
203
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
204
+
205
+ def get_x_prev_and_pred_x0(e_t, index):
206
+ # select parameters corresponding to the currently considered timestep
207
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
208
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
209
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
210
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
211
+
212
+ # current prediction for x_0
213
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
214
+ if quantize_denoised:
215
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
216
+ if dynamic_threshold is not None:
217
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
218
+ # direction pointing to x_t
219
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
220
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
221
+ if noise_dropout > 0.:
222
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
223
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
224
+ return x_prev, pred_x0
225
+
226
+ e_t = get_model_output(x, t)
227
+ if len(old_eps) == 0:
228
+ # Pseudo Improved Euler (2nd order)
229
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
230
+ e_t_next = get_model_output(x_prev, t_next)
231
+ e_t_prime = (e_t + e_t_next) / 2
232
+ elif len(old_eps) == 1:
233
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
234
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
235
+ elif len(old_eps) == 2:
236
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
237
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
238
+ elif len(old_eps) >= 3:
239
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
240
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
241
+
242
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
243
+
244
+ return x_prev, pred_x0, e_t
ldm/models/diffusion/sampling_util.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ def append_dims(x, target_dims):
6
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions.
7
+ From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
8
+ dims_to_append = target_dims - x.ndim
9
+ if dims_to_append < 0:
10
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
11
+ return x[(...,) + (None,) * dims_to_append]
12
+
13
+
14
+ def norm_thresholding(x0, value):
15
+ s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
16
+ return x0 * (value / s)
17
+
18
+
19
+ def spatial_norm_thresholding(x0, value):
20
+ # b c h w
21
+ s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
22
+ return x0 * (value / s)
ldm/modules/__pycache__/attention.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
ldm/modules/__pycache__/attention.cpython-311.pyc ADDED
Binary file (20.5 kB). View file
 
ldm/modules/__pycache__/ema.cpython-310.pyc ADDED
Binary file (3.19 kB). View file
 
ldm/modules/__pycache__/ema.cpython-311.pyc ADDED
Binary file (5.9 kB). View file
 
ldm/modules/attention.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+ from typing import Optional, Any
8
+ import os
9
+
10
+ from ldm.modules.diffusionmodules.util import checkpoint
11
+
12
+ try:
13
+ import xformers
14
+ import xformers.ops
15
+ XFORMERS_IS_AVAILBLE = True
16
+ except:
17
+ XFORMERS_IS_AVAILBLE = False
18
+
19
+ # CrossAttn precision handling
20
+ import os
21
+ _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
22
+
23
+ def exists(val):
24
+ return val is not None
25
+
26
+
27
+ def uniq(arr):
28
+ return{el: True for el in arr}.keys()
29
+
30
+
31
+ def default(val, d):
32
+ if exists(val):
33
+ return val
34
+ return d() if isfunction(d) else d
35
+
36
+ class GEGLU(nn.Module):
37
+ def __init__(self, dim_in, dim_out):
38
+ super().__init__()
39
+ self.proj = nn.Linear(dim_in, dim_out * 2)
40
+
41
+ def forward(self, x):
42
+ x, gate = self.proj(x).chunk(2, dim=-1)
43
+ return x * F.gelu(gate)
44
+
45
+
46
+ class FeedForward(nn.Module):
47
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
48
+ super().__init__()
49
+ inner_dim = int(dim * mult)
50
+ dim_out = default(dim_out, dim)
51
+ project_in = nn.Sequential(
52
+ nn.Linear(dim, inner_dim),
53
+ nn.GELU()
54
+ ) if not glu else GEGLU(dim, inner_dim)
55
+
56
+ self.net = nn.Sequential(
57
+ project_in,
58
+ nn.Dropout(dropout),
59
+ nn.Linear(inner_dim, dim_out)
60
+ )
61
+
62
+ def forward(self, x):
63
+ return self.net(x)
64
+
65
+
66
+ def zero_module(module):
67
+ """
68
+ Zero out the parameters of a module and return it.
69
+ """
70
+ for p in module.parameters():
71
+ p.detach().zero_()
72
+ return module
73
+
74
+
75
+ def Normalize(in_channels):
76
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
77
+
78
+
79
+ class SpatialSelfAttention(nn.Module):
80
+ def __init__(self, in_channels):
81
+ super().__init__()
82
+ self.in_channels = in_channels
83
+
84
+ self.norm = Normalize(in_channels)
85
+ self.q = torch.nn.Conv2d(in_channels,
86
+ in_channels,
87
+ kernel_size=1,
88
+ stride=1,
89
+ padding=0)
90
+ self.k = torch.nn.Conv2d(in_channels,
91
+ in_channels,
92
+ kernel_size=1,
93
+ stride=1,
94
+ padding=0)
95
+ self.v = torch.nn.Conv2d(in_channels,
96
+ in_channels,
97
+ kernel_size=1,
98
+ stride=1,
99
+ padding=0)
100
+ self.proj_out = torch.nn.Conv2d(in_channels,
101
+ in_channels,
102
+ kernel_size=1,
103
+ stride=1,
104
+ padding=0)
105
+
106
+ def forward(self, x):
107
+ h_ = x
108
+ h_ = self.norm(h_)
109
+ q = self.q(h_)
110
+ k = self.k(h_)
111
+ v = self.v(h_)
112
+
113
+ b,c,h,w = q.shape
114
+ q = rearrange(q, 'b c h w -> b (h w) c')
115
+ k = rearrange(k, 'b c h w -> b c (h w)')
116
+ w_ = torch.einsum('bij,bjk->bik', q, k)
117
+
118
+ w_ = w_ * (int(c)**(-0.5))
119
+ w_ = torch.nn.functional.softmax(w_, dim=2)
120
+
121
+ v = rearrange(v, 'b c h w -> b c (h w)')
122
+ w_ = rearrange(w_, 'b i j -> b j i')
123
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
124
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
125
+ h_ = self.proj_out(h_)
126
+
127
+ return x+h_
128
+
129
+ class CrossAttention(nn.Module):
130
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., **kwargs):
131
+ super().__init__()
132
+ inner_dim = dim_head * heads
133
+ context_dim = default(context_dim, query_dim)
134
+
135
+ self.scale = dim_head ** -0.5
136
+ self.heads = heads
137
+
138
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
139
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
140
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
141
+
142
+ self.to_out = nn.Sequential(
143
+ nn.Linear(inner_dim, query_dim),
144
+ nn.Dropout(dropout)
145
+ )
146
+
147
+
148
+ def forward(self, x, context=None, mask=None):
149
+ h = self.heads
150
+ q = self.to_q(x)
151
+ context = default(context, x)
152
+ k = self.to_k(context)
153
+ v = self.to_v(context)
154
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
155
+
156
+ if _ATTN_PRECISION =="fp32":
157
+ with torch.autocast(enabled=False, device_type = 'cuda'):
158
+ q, k = q.float(), k.float()
159
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
160
+ else:
161
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
162
+
163
+ del q, k
164
+ if exists(mask):
165
+ mask = rearrange(mask, 'b ... -> b (...)')
166
+ max_neg_value = -torch.finfo(sim.dtype).max
167
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
168
+ sim.masked_fill_(~mask, max_neg_value)
169
+
170
+ sim = sim.softmax(dim=-1)
171
+
172
+ out = einsum('b i j, b j d -> b i d', sim, v)
173
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
174
+ return self.to_out(out)
175
+
176
+ class MemoryEfficientCrossAttention(nn.Module):
177
+ # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
178
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, zero_init=False, **kwargs):
179
+ super().__init__()
180
+ print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
181
+ f"{heads} heads.")
182
+ inner_dim = dim_head * heads
183
+ context_dim = default(context_dim, query_dim)
184
+
185
+ self.heads = heads
186
+ self.dim_head = dim_head
187
+ if not zero_init:
188
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
189
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
190
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
191
+ else:
192
+ self.to_q = zero_module(nn.Linear(query_dim, inner_dim, bias=False))
193
+ self.to_k = zero_module(nn.Linear(context_dim, inner_dim, bias=False))
194
+ self.to_v = zero_module(nn.Linear(context_dim, inner_dim, bias=False))
195
+
196
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
197
+ self.attention_op: Optional[Any] = None
198
+
199
+
200
+ def forward(self, x, context=None, mask=None, **kwargs):
201
+ q = self.to_q(x)
202
+ context = default(context, x)
203
+ k = self.to_k(context)
204
+ v = self.to_v(context)
205
+ b, _, _ = q.shape
206
+ q, k, v = map(
207
+ lambda t: t.unsqueeze(3)
208
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
209
+ .permute(0, 2, 1, 3)
210
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
211
+ .contiguous(),
212
+ (q, k, v),
213
+ )
214
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
215
+ if exists(mask):
216
+ raise NotImplementedError
217
+ out = (
218
+ out.unsqueeze(0)
219
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
220
+ .permute(0, 2, 1, 3)
221
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
222
+ )
223
+ return self.to_out(out)
224
+
225
+ class BasicTransformerBlock(nn.Module):
226
+ ATTENTION_MODES = {
227
+ "softmax": CrossAttention, # vanilla attention
228
+ "softmax-xformers": MemoryEfficientCrossAttention
229
+ }
230
+ def __init__(
231
+ self,
232
+ dim,
233
+ n_heads,
234
+ d_head,
235
+ dropout=0.,
236
+ context_dim=None,
237
+ gated_ff=True,
238
+ checkpoint=True,
239
+ disable_self_attn=False
240
+ ):
241
+ super().__init__()
242
+ attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
243
+ assert attn_mode in self.ATTENTION_MODES
244
+ attn_cls = self.ATTENTION_MODES[attn_mode]
245
+ self.disable_self_attn = disable_self_attn
246
+ self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
247
+ context_dim=context_dim if self.disable_self_attn else None)
248
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
249
+ self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
250
+ heads=n_heads, dim_head=d_head, dropout=dropout)
251
+ self.norm1 = nn.LayerNorm(dim)
252
+ self.norm2 = nn.LayerNorm(dim)
253
+ self.norm3 = nn.LayerNorm(dim)
254
+ self.checkpoint = checkpoint
255
+
256
+ def forward(self, x, context=None,hint=None):
257
+ if hint is None:
258
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
259
+ else:
260
+ return checkpoint(self._forward, (x, context, hint), self.parameters(), self.checkpoint)
261
+
262
+ def _forward(self, x, context=None,hint=None):
263
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None,hint=hint) + x
264
+ x = self.attn2(self.norm2(x), context=context) + x
265
+ x = self.ff(self.norm3(x)) + x
266
+ return x
267
+
268
+ class SpatialTransformer(nn.Module):
269
+ """
270
+ Transformer block for image-like data.
271
+ First, project the input (aka embedding)
272
+ and reshape to b, t, d.
273
+ Then apply standard transformer action.
274
+ Finally, reshape to image
275
+ NEW: use_linear for more efficiency instead of the 1x1 convs
276
+ """
277
+ def __init__(self, in_channels, n_heads, d_head,
278
+ depth=1, dropout=0., context_dim=None,
279
+ disable_self_attn=False, use_linear=False,
280
+ use_checkpoint=True):
281
+ super().__init__()
282
+ if exists(context_dim) and not isinstance(context_dim, list):
283
+ context_dim = [context_dim]
284
+ self.in_channels = in_channels
285
+ inner_dim = n_heads * d_head
286
+ self.norm = Normalize(in_channels)
287
+ if not use_linear:
288
+ self.proj_in = nn.Conv2d(in_channels,
289
+ inner_dim,
290
+ kernel_size=1,
291
+ stride=1,
292
+ padding=0)
293
+ else:
294
+ self.proj_in = nn.Linear(in_channels, inner_dim)
295
+
296
+ self.transformer_blocks = nn.ModuleList(
297
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
298
+ disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
299
+ for d in range(depth)]
300
+ )
301
+ if not use_linear:
302
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
303
+ in_channels,
304
+ kernel_size=1,
305
+ stride=1,
306
+ padding=0))
307
+ else:
308
+ self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
309
+ self.use_linear = use_linear
310
+
311
+ def forward(self, x, context=None,hint=None):
312
+ # note: if no context is given, cross-attention defaults to self-attention
313
+ if not isinstance(context, list):
314
+ context = [context]
315
+ b, c, h, w = x.shape
316
+ x_in = x
317
+ x = self.norm(x)
318
+ if not self.use_linear:
319
+ x = self.proj_in(x)
320
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
321
+ if self.use_linear:
322
+ x = self.proj_in(x)
323
+ for i, block in enumerate(self.transformer_blocks):
324
+ x = block(x, context=context[i],hint=hint)
325
+ if self.use_linear:
326
+ x = self.proj_out(x)
327
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
328
+ if not self.use_linear:
329
+ x = self.proj_out(x)
330
+ return x + x_in
ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (158 Bytes). View file
 
ldm/modules/diffusionmodules/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (264 Bytes). View file
 
ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc ADDED
Binary file (20.8 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/model.cpython-311.pyc ADDED
Binary file (44.9 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc ADDED
Binary file (20.7 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-311.pyc ADDED
Binary file (36.4 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc ADDED
Binary file (9.73 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/util.cpython-311.pyc ADDED
Binary file (16.7 kB). View file