|
import os |
|
from PIL import Image |
|
import numpy as np |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
|
|
from networks.u2net import U2NET |
|
device = 'cuda' |
|
|
|
image_dir = 'F:\\AI\\StableVITON-master\\datasets\\test\\image' |
|
result_dir = 'F:\\AI\\StableVITON-master\\datasets\\test\\cloth-mask' |
|
checkpoint_path = '../checkpoints/cloth_segm_u2net_latest.pth' |
|
|
|
def load_checkpoint_mgpu(model, checkpoint_path): |
|
if not os.path.exists(checkpoint_path): |
|
print("----No checkpoints at given path----") |
|
return |
|
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) |
|
new_state_dict = OrderedDict() |
|
for k, v in model_state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
|
|
model.load_state_dict(new_state_dict) |
|
print("----checkpoints loaded from path: {}----".format(checkpoint_path)) |
|
return model |
|
|
|
class Normalize_image(object): |
|
"""Normalize given tensor into given mean and standard dev |
|
|
|
Args: |
|
mean (float): Desired mean to substract from tensors |
|
std (float): Desired std to divide from tensors |
|
""" |
|
|
|
def __init__(self, mean, std): |
|
assert isinstance(mean, (float)) |
|
if isinstance(mean, float): |
|
self.mean = mean |
|
|
|
if isinstance(std, float): |
|
self.std = std |
|
|
|
self.normalize_1 = transforms.Normalize(self.mean, self.std) |
|
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3) |
|
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18) |
|
|
|
def __call__(self, image_tensor): |
|
if image_tensor.shape[0] == 1: |
|
return self.normalize_1(image_tensor) |
|
|
|
elif image_tensor.shape[0] == 3: |
|
return self.normalize_3(image_tensor) |
|
|
|
elif image_tensor.shape[0] == 18: |
|
return self.normalize_18(image_tensor) |
|
|
|
else: |
|
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18" |
|
|
|
|
|
def get_palette(num_cls): |
|
""" Returns the color map for visualizing the segmentation mask. |
|
Args: |
|
num_cls: Number of classes |
|
Returns: |
|
The color map |
|
""" |
|
n = num_cls |
|
palette = [0] * (n * 3) |
|
for j in range(0, n): |
|
lab = j |
|
palette[j * 3 + 0] = 0 |
|
palette[j * 3 + 1] = 0 |
|
palette[j * 3 + 2] = 0 |
|
i = 0 |
|
while lab: |
|
palette[j * 3 + 0] = 255 |
|
palette[j * 3 + 1] = 255 |
|
palette[j * 3 + 2] = 255 |
|
|
|
|
|
|
|
i += 1 |
|
lab >>= 3 |
|
return palette |
|
|
|
|
|
transforms_list = [] |
|
transforms_list += [transforms.ToTensor()] |
|
transforms_list += [Normalize_image(0.5, 0.5)] |
|
transform_rgb = transforms.Compose(transforms_list) |
|
|
|
net = U2NET(in_ch=3, out_ch=4) |
|
net = load_checkpoint_mgpu(net, checkpoint_path) |
|
net = net.to(device) |
|
net = net.eval() |
|
|
|
palette = get_palette(4) |
|
|
|
images_list = sorted(os.listdir(image_dir)) |
|
for image_name in images_list: |
|
img = Image.open(os.path.join(image_dir, image_name)).convert('RGB') |
|
img_size = img.size |
|
img = img.resize((768, 768), Image.BICUBIC) |
|
image_tensor = transform_rgb(img) |
|
image_tensor = torch.unsqueeze(image_tensor, 0) |
|
|
|
output_tensor = net(image_tensor.to(device)) |
|
output_tensor = F.log_softmax(output_tensor[0], dim=1) |
|
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1] |
|
output_tensor = torch.squeeze(output_tensor, dim=0) |
|
output_tensor = torch.squeeze(output_tensor, dim=0) |
|
output_arr = output_tensor.cpu().numpy() |
|
|
|
output_img = Image.fromarray(output_arr.astype('uint8'), mode='L') |
|
output_img = output_img.resize(img_size, Image.BICUBIC) |
|
|
|
output_img.putpalette(palette) |
|
output_img = output_img.convert('L') |
|
output_img.save(os.path.join(result_dir, image_name[:-4]+'.jpg')) |
|
|