metadata
base_model: []
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the linear merge method.
Models Merged
The following models were included in the merge:
- calme-2.4-rys-78b
- homer-78b (sft on calme-2.4-rys-78b)
How to use
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "newsbang/Homer-calme-2.4-78b-mix"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "You are a very helpful assistant."},
{"role": "user", "content": "Hello"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]