Neuria_BERT_Contexto

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0980
  • Accuracy: 0.8660
  • Precision Micro: 0.9703
  • Recall Micro: 0.8790
  • F1 Micro: 0.9224
  • F1 Macro: 0.7374

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Micro Recall Micro F1 Micro F1 Macro
0.5538 1.0 6 0.6032 0.0685 0.1679 0.1183 0.1388 0.0580
0.506 2.0 12 0.5156 0.0031 0.2 0.0027 0.0053 0.0041
0.4227 3.0 18 0.4170 0.0 0.0 0.0 0.0 0.0
0.3503 4.0 24 0.3627 0.0 0.0 0.0 0.0 0.0
0.3087 5.0 30 0.3348 0.0 0.0 0.0 0.0 0.0
0.2892 6.0 36 0.3220 0.0 0.0 0.0 0.0 0.0
0.277 7.0 42 0.3104 0.0 0.0 0.0 0.0 0.0
0.2664 8.0 48 0.2957 0.0 0.0 0.0 0.0 0.0
0.2525 9.0 54 0.2762 0.0872 1.0 0.1183 0.2115 0.0760
0.2383 10.0 60 0.2540 0.1900 0.9878 0.2177 0.3568 0.1589
0.2161 11.0 66 0.2363 0.2991 0.9034 0.3522 0.5068 0.2426
0.1976 12.0 72 0.2156 0.4299 0.9087 0.5081 0.6517 0.3581
0.1849 13.0 78 0.2039 0.5047 0.9030 0.5753 0.7028 0.4136
0.1686 14.0 84 0.1877 0.5732 0.8996 0.6505 0.7551 0.4510
0.1616 15.0 90 0.1746 0.6386 0.9446 0.6882 0.7963 0.4854
0.145 16.0 96 0.1651 0.6916 0.9477 0.7312 0.8255 0.5074
0.1403 17.0 102 0.1554 0.7259 0.9589 0.7527 0.8434 0.5398
0.1272 18.0 108 0.1457 0.7664 0.9670 0.7876 0.8681 0.5675
0.1188 19.0 114 0.1412 0.7477 0.9659 0.7608 0.8511 0.5605
0.1128 20.0 120 0.1325 0.7819 0.9612 0.7984 0.8722 0.6468
0.1065 21.0 126 0.1280 0.7975 0.9773 0.8118 0.8869 0.6576
0.101 22.0 132 0.1227 0.8037 0.9712 0.8172 0.8876 0.6556
0.0987 23.0 138 0.1201 0.8193 0.9780 0.8360 0.9014 0.7055
0.0948 24.0 144 0.1159 0.8193 0.975 0.8387 0.9017 0.7017
0.0905 25.0 150 0.1113 0.8411 0.9755 0.8548 0.9112 0.7149
0.0875 26.0 156 0.1106 0.8349 0.9753 0.8495 0.9080 0.7147
0.0869 27.0 162 0.1066 0.8380 0.9726 0.8575 0.9114 0.7221
0.0833 28.0 168 0.1058 0.8505 0.9787 0.8656 0.9187 0.7295
0.0827 29.0 174 0.1045 0.8536 0.9758 0.8683 0.9189 0.7332
0.0817 30.0 180 0.1030 0.8536 0.9729 0.8683 0.9176 0.7319
0.0806 31.0 186 0.1011 0.8598 0.9701 0.8737 0.9194 0.7351
0.0784 32.0 192 0.1013 0.8598 0.9731 0.8737 0.9207 0.7350
0.0778 33.0 198 0.1008 0.8598 0.9731 0.8737 0.9207 0.7357
0.0771 34.0 204 0.0991 0.8629 0.9731 0.8763 0.9222 0.7373
0.0763 35.0 210 0.0987 0.8598 0.9701 0.8737 0.9194 0.7351
0.0795 36.0 216 0.0985 0.8629 0.9731 0.8763 0.9222 0.7373
0.078 37.0 222 0.0986 0.8629 0.9731 0.8763 0.9222 0.7373
0.0761 38.0 228 0.0983 0.8629 0.9702 0.8763 0.9209 0.7366
0.0754 39.0 234 0.0982 0.8629 0.9702 0.8763 0.9209 0.7366
0.0759 40.0 240 0.0981 0.8660 0.9703 0.8790 0.9224 0.7374
0.0758 41.0 246 0.0981 0.8660 0.9703 0.8790 0.9224 0.7374
0.0877 41.7619 250 0.0980 0.8660 0.9703 0.8790 0.9224 0.7374

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.4.1
  • Datasets 2.19.1
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
110M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for neuria99/Neuria_BERT_Contexto

Finetuned
(94)
this model