alexmarques's picture
Update README.md
b18fcb2 verified
---
language:
- en
pipeline_tag: text-generation
license: apache-2.0
license_link: https://www.apache.org/licenses/LICENSE-2.0
---
# Qwen2-72B-Instruct-quantized.w4a16
## Model Overview
- **Model Architecture:** Qwen2
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 7/11/2024
- **Version:** 1.0
- **License(s):** [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
- **Model Developers:** Neural Magic
Quantized version of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct).
It achieves an average score of 68.35 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 69.63.
### Model Optimizations
This model was obtained by quantizing the weights of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
Only the weights of the linear operators within transformers blocks are quantized. Symmetric group-wise quantization is applied, in which a linear scaling per group maps the INT4 and floating point representations of the quantized weights.
[AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 10% damping factor, group-size as 128 and 512 sequences sampled from [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/Qwen2-72B-Instruct-quantized.w4a16"
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
llm = LLM(model=model_id, tensor_parallel_size=1)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
### Use with transformers
This model is supported by Transformers leveraging the integration with the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) data format.
The following example contemplates how the model can be used using the `generate()` function.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "neuralmagic/Qwen2-72B-Instruct-quantized.w4a16"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
## Creation
This model was created by applying the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) library as presented in the code snipet below.
Although AutoGPTQ was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoGPTQ.
```python
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from datasets import load_dataset
import random
model_id = "Qwen/Qwen2-72B-Instruct"
num_samples = 512
max_seq_len = 4096
tokenizer = AutoTokenizer.from_pretrained(model_id)
preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)}
dataset_name = "neuralmagic/LLM_compression_calibration"
dataset = load_dataset(dataset_name, split="train")
ds = dataset.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
examples = [
tokenizer(
example["text"], padding=False, max_length=max_seq_len, truncation=True,
) for example in ds
]
quantize_config = BaseQuantizeConfig(
bits=4,
group_size=128,
desc_act=True,
model_file_base_name="model",
damp_percent=0.1,
)
model = AutoGPTQForCausalLM.from_pretrained(
model_id,
quantize_config,
device_map="auto",
)
model.quantize(examples)
model.save_pretrained("Qwen2-72B-Instruct-quantized.w4a16")
```
## Evaluation
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Qwen2-72B-Instruct-quantized.w4a16",dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
--tasks openllm \
--batch_size auto
```
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Qwen2-72B-Instruct </strong>
</td>
<td><strong>Qwen2-72B-Instruct-quantized.w4a16(this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>83.96
</td>
<td>83.41
</td>
<td>99.35%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>71.58
</td>
<td>71.84
</td>
<td>100.36%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>88.24
</td>
<td>88.93
</td>
<td>100.78%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>86.94
</td>
<td>86.31
</td>
<td>99.28%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>82.79
</td>
<td>83.50
</td>
<td>100.86%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot)
</td>
<td>66.98
</td>
<td>66.21
</td>
<td>98.85%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>80.08</strong>
</td>
<td><strong>80.03</strong>
</td>
<td><strong>99.94%</strong>
</td>
</tr>
</table>