SentenceTransformer based on thenlper/gte-base
This is a sentence-transformers model finetuned from thenlper/gte-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("neel2306/gte-cp-base")
# Run inference
sentences = [
'Mineral Fuels, Lubricants Etc.',
'Crude oil',
'Coal',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,932 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 9.91 tokens
- max: 48 tokens
- min: 3 tokens
- mean: 6.05 tokens
- max: 17 tokens
- min: 3 tokens
- mean: 5.08 tokens
- max: 14 tokens
- Samples:
anchor positive negative Clay Floor And Wall Tile, Glazed And Unglazed (Including Quarry Tile And Ceramic Mosaic Tile)
Ceramic mosaic tiles
Natural stone tiles
Electrical Relay/Conductor
Relay switches
Electrical insulators
Plasterer (Kelowna, British Columbia 5 13) (Union Rate)
Labor costs for plasterers
Painting supplies
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,733 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 10.09 tokens
- max: 53 tokens
- min: 3 tokens
- mean: 6.06 tokens
- max: 21 tokens
- min: 3 tokens
- mean: 4.95 tokens
- max: 14 tokens
- Samples:
anchor positive negative Asphalt Paving Mixture and Block Manufacturing
Recycled asphalt pavement (RAP)
Asphalt shingles
Air Conditioning Plant
Refrigerant gases
Heating elements
Oak Lumber
Oak plywood
Pine lumber
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 6e-05num_train_epochs
: 10warmup_ratio
: 0.1optim
: adamw_hfbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 6e-05weight_decay
: 0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_hfoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0731 | 50 | 1.9026 | 1.5169 |
0.1462 | 100 | 1.5479 | 1.0813 |
0.2193 | 150 | 1.0239 | 0.7291 |
0.2924 | 200 | 0.6914 | 0.6372 |
0.3655 | 250 | 0.653 | 0.5887 |
0.4386 | 300 | 0.5469 | 0.5605 |
0.5117 | 350 | 0.5312 | 0.5408 |
0.5848 | 400 | 0.4996 | 0.5100 |
0.6579 | 450 | 0.4445 | 0.4830 |
0.7310 | 500 | 0.5092 | 0.4734 |
0.8041 | 550 | 0.532 | 0.4476 |
0.8772 | 600 | 0.4147 | 0.4714 |
0.9503 | 650 | 0.477 | 0.4400 |
1.0234 | 700 | 0.4243 | 0.4466 |
1.0965 | 750 | 0.485 | 0.4172 |
1.1696 | 800 | 0.3717 | 0.4271 |
1.2427 | 850 | 0.3716 | 0.4369 |
1.3158 | 900 | 0.3742 | 0.4104 |
1.3889 | 950 | 0.3157 | 0.4436 |
1.4620 | 1000 | 0.3035 | 0.4444 |
1.5351 | 1050 | 0.2797 | 0.4558 |
1.6082 | 1100 | 0.2639 | 0.4248 |
1.6813 | 1150 | 0.2286 | 0.4308 |
1.7544 | 1200 | 0.2753 | 0.4098 |
1.8275 | 1250 | 0.1904 | 0.4415 |
1.9006 | 1300 | 0.2175 | 0.4503 |
1.9737 | 1350 | 0.1806 | 0.4245 |
2.0468 | 1400 | 0.1826 | 0.4418 |
2.1199 | 1450 | 0.1952 | 0.4138 |
2.1930 | 1500 | 0.1612 | 0.4061 |
2.2661 | 1550 | 0.1604 | 0.3910 |
2.3392 | 1600 | 0.1199 | 0.3852 |
2.4123 | 1650 | 0.1439 | 0.4082 |
2.4854 | 1700 | 0.1402 | 0.4352 |
2.5585 | 1750 | 0.1116 | 0.4338 |
2.6316 | 1800 | 0.1113 | 0.4189 |
2.7047 | 1850 | 0.1159 | 0.4013 |
2.7778 | 1900 | 0.1241 | 0.3853 |
2.8509 | 1950 | 0.0977 | 0.3919 |
2.9240 | 2000 | 0.0953 | 0.4022 |
2.9971 | 2050 | 0.1159 | 0.4073 |
3.0702 | 2100 | 0.0923 | 0.3903 |
3.1433 | 2150 | 0.0958 | 0.3833 |
3.2164 | 2200 | 0.0787 | 0.3875 |
3.2895 | 2250 | 0.083 | 0.3807 |
3.3626 | 2300 | 0.0714 | 0.3806 |
3.4357 | 2350 | 0.0748 | 0.3997 |
3.5088 | 2400 | 0.0779 | 0.4027 |
3.5819 | 2450 | 0.0709 | 0.3921 |
3.6550 | 2500 | 0.0482 | 0.3905 |
3.7281 | 2550 | 0.0784 | 0.3760 |
3.8012 | 2600 | 0.0694 | 0.3809 |
3.8743 | 2650 | 0.0725 | 0.3957 |
3.9474 | 2700 | 0.0718 | 0.3897 |
4.0205 | 2750 | 0.05 | 0.3894 |
4.0936 | 2800 | 0.0597 | 0.4014 |
4.1667 | 2850 | 0.0445 | 0.3929 |
4.2398 | 2900 | 0.039 | 0.3856 |
4.3129 | 2950 | 0.0405 | 0.3723 |
4.3860 | 3000 | 0.0456 | 0.3764 |
4.4591 | 3050 | 0.0493 | 0.3876 |
4.5322 | 3100 | 0.036 | 0.3866 |
4.6053 | 3150 | 0.0517 | 0.3791 |
4.6784 | 3200 | 0.0383 | 0.3724 |
4.7515 | 3250 | 0.0453 | 0.3886 |
4.8246 | 3300 | 0.0469 | 0.3897 |
4.8977 | 3350 | 0.0385 | 0.3940 |
4.9708 | 3400 | 0.0427 | 0.3877 |
5.0439 | 3450 | 0.0212 | 0.3914 |
5.1170 | 3500 | 0.0452 | 0.3899 |
5.1901 | 3550 | 0.0252 | 0.3925 |
5.2632 | 3600 | 0.0228 | 0.3895 |
5.3363 | 3650 | 0.0219 | 0.3792 |
5.4094 | 3700 | 0.0275 | 0.3882 |
5.4825 | 3750 | 0.0246 | 0.3892 |
5.5556 | 3800 | 0.0226 | 0.3895 |
5.6287 | 3850 | 0.0219 | 0.3912 |
5.7018 | 3900 | 0.027 | 0.3800 |
5.7749 | 3950 | 0.0268 | 0.3667 |
5.8480 | 4000 | 0.0313 | 0.3687 |
5.9211 | 4050 | 0.0233 | 0.3675 |
5.9942 | 4100 | 0.0201 | 0.3649 |
6.0673 | 4150 | 0.0207 | 0.3727 |
6.1404 | 4200 | 0.0175 | 0.3802 |
6.2135 | 4250 | 0.0117 | 0.3760 |
6.2865 | 4300 | 0.0124 | 0.3731 |
6.3596 | 4350 | 0.0164 | 0.3713 |
6.4327 | 4400 | 0.0149 | 0.3782 |
6.5058 | 4450 | 0.0127 | 0.3747 |
6.5789 | 4500 | 0.013 | 0.3746 |
6.6520 | 4550 | 0.0078 | 0.3756 |
6.7251 | 4600 | 0.0171 | 0.3741 |
6.7982 | 4650 | 0.0211 | 0.3680 |
6.8713 | 4700 | 0.0186 | 0.3686 |
6.9444 | 4750 | 0.0213 | 0.3688 |
7.0175 | 4800 | 0.0107 | 0.3647 |
7.0906 | 4850 | 0.011 | 0.3677 |
7.1637 | 4900 | 0.0098 | 0.3671 |
7.2368 | 4950 | 0.0091 | 0.3708 |
7.3099 | 5000 | 0.0074 | 0.3673 |
7.3830 | 5050 | 0.0101 | 0.3672 |
7.4561 | 5100 | 0.0115 | 0.3676 |
7.5292 | 5150 | 0.0054 | 0.3656 |
7.6023 | 5200 | 0.0076 | 0.3657 |
7.6754 | 5250 | 0.0054 | 0.3639 |
7.7485 | 5300 | 0.0115 | 0.3600 |
7.8216 | 5350 | 0.0105 | 0.3657 |
7.8947 | 5400 | 0.0175 | 0.3649 |
7.9678 | 5450 | 0.0091 | 0.3634 |
8.0409 | 5500 | 0.0043 | 0.3646 |
8.1140 | 5550 | 0.0078 | 0.3650 |
8.1871 | 5600 | 0.004 | 0.3683 |
8.2602 | 5650 | 0.0045 | 0.3669 |
8.3333 | 5700 | 0.005 | 0.3661 |
8.4064 | 5750 | 0.0074 | 0.3652 |
8.4795 | 5800 | 0.0042 | 0.3662 |
8.5526 | 5850 | 0.0039 | 0.3696 |
8.6257 | 5900 | 0.004 | 0.3724 |
8.6988 | 5950 | 0.008 | 0.3714 |
8.7719 | 6000 | 0.0057 | 0.3711 |
8.8450 | 6050 | 0.0045 | 0.3702 |
8.9181 | 6100 | 0.0122 | 0.3715 |
8.9912 | 6150 | 0.0064 | 0.3703 |
9.0643 | 6200 | 0.0039 | 0.3689 |
9.1374 | 6250 | 0.0034 | 0.3680 |
9.2105 | 6300 | 0.0022 | 0.3680 |
9.2836 | 6350 | 0.0021 | 0.3684 |
9.3567 | 6400 | 0.0025 | 0.3685 |
9.4298 | 6450 | 0.0041 | 0.3679 |
9.5029 | 6500 | 0.0018 | 0.3679 |
9.5760 | 6550 | 0.0039 | 0.3686 |
9.6491 | 6600 | 0.0021 | 0.3691 |
9.7222 | 6650 | 0.0056 | 0.3689 |
9.7953 | 6700 | 0.0025 | 0.3691 |
9.8684 | 6750 | 0.0063 | 0.3692 |
9.9415 | 6800 | 0.0074 | 0.3692 |
Framework Versions
- Python: 3.12.6
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cpu
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for neel2306/gte-cp-base
Base model
thenlper/gte-base