llm3br256

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the goavanto-oneshot-train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0060

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss
0.0165 0.2548 50 0.0163
0.0137 0.5096 100 0.0120
0.01 0.7643 150 0.0105
0.0094 1.0191 200 0.0094
0.0086 1.2739 250 0.0088
0.0082 1.5287 300 0.0081
0.0072 1.7834 350 0.0076
0.0075 2.0382 400 0.0075
0.0056 2.2930 450 0.0071
0.0054 2.5478 500 0.0069
0.0048 2.8025 550 0.0067
0.0037 3.0573 600 0.0066
0.0029 3.3121 650 0.0062
0.0031 3.5669 700 0.0064
0.0029 3.8217 750 0.0060
0.0025 4.0764 800 0.0062
0.0021 4.3312 850 0.0063
0.0024 4.5860 900 0.0061
0.0025 4.8408 950 0.0061

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for neel-nanonets/goavanto_1

Adapter
(347)
this model