|
--- |
|
tags: autotrain |
|
language: en |
|
widget: |
|
- text: "I love AutoTrain 🤗" |
|
datasets: |
|
- ndavid/autotrain-data-trec-fine-bert |
|
co2_eq_emissions: 0.02238820299105448 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 739422530 |
|
- CO2 Emissions (in grams): 0.02238820299105448 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.36623290181159973 |
|
- Accuracy: 0.9321753515301903 |
|
- Macro F1: 0.9066706944656866 |
|
- Micro F1: 0.9321753515301903 |
|
- Weighted F1: 0.9314858667247282 |
|
- Macro Precision: 0.9489233194839841 |
|
- Micro Precision: 0.9321753515301903 |
|
- Weighted Precision: 0.9347346558570125 |
|
- Macro Recall: 0.8842587178845419 |
|
- Micro Recall: 0.9321753515301903 |
|
- Weighted Recall: 0.9321753515301903 |
|
|
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ndavid/autotrain-trec-fine-bert-739422530 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("ndavid/autotrain-trec-fine-bert-739422530", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("ndavid/autotrain-trec-fine-bert-739422530", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |