|
--- |
|
license: apache-2.0 |
|
--- |
|
# Positive Transfer Of The Whisper Speech Transformer To Human And Animal Voice Activity Detection |
|
We proposed WhisperSeg, utilizing the Whisper Transformer pre-trained for Automatic Speech Recognition (ASR) for both human and animal Voice Activity Detection (VAD). For more details, please refer to our paper |
|
|
|
> |
|
> [**Positive Transfer of the Whisper Speech Transformer to Human and Animal Voice Activity Detection**]() |
|
> |
|
> Nianlong Gu, Kanghwi Lee, Maris Basha, Sumit Kumar Ram, Guanghao You, Richard H. R. Hahnloser <br> |
|
> University of Zurich and ETH Zurich |
|
|
|
|
|
The model "nccratliri/whisperseg-large-ms-ct2" is the CTranslate2 version of the multi-species WhisperSeg-large that was finetuned on the vocal segmentation datasets of five species. |
|
|
|
**This model is used for faster inference.** |
|
|
|
## Usage |
|
### Clone the GitHub repo and install dependencies |
|
```bash |
|
git clone https://github.com/nianlonggu/WhisperSeg.git |
|
cd WhisperSeg; pip install -r requirements.txt |
|
``` |
|
|
|
Then in the folder "WhisperSeg", run the following python script: |
|
```python |
|
from model import WhisperSegmenterFast |
|
import librosa |
|
import json |
|
segmenter = WhisperSegmenterFast( "nccratliri/whisperseg-large-ms-ct2", device="cuda" ) |
|
|
|
sr = 32000 |
|
min_frequency = 0 |
|
spec_time_step = 0.0025 |
|
min_segment_length = 0.01 |
|
eps = 0.02 |
|
num_trials = 3 |
|
|
|
audio, _ = librosa.load( "data/example_subset/Zebra_finch/test_adults/zebra_finch_g17y2U-f00007.wav", |
|
sr = sr ) |
|
|
|
prediction = segmenter.segment( audio, sr = sr, min_frequency = min_frequency, spec_time_step = spec_time_step, |
|
min_segment_length = min_segment_length, eps = eps,num_trials = num_trials ) |
|
print(prediction) |
|
``` |
|
{'onset': [0.01, 0.38, 0.603, 0.758, 0.912, 1.813, 1.967, 2.073, 2.838, 2.982, 3.112, 3.668, 3.828, 3.953, 5.158, 5.323, 5.467], 'offset': [0.073, 0.447, 0.673, 0.83, 1.483, 1.882, 2.037, 2.643, 2.893, 3.063, 3.283, 3.742, 3.898, 4.523, 5.223, 5.393, 6.043], 'cluster': ['zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0']} |
|
|
|
Visualize the results of WhisperSeg: |
|
```python |
|
from audio_utils import SpecViewer |
|
spec_viewer = SpecViewer() |
|
spec_viewer.visualize( audio = audio, sr = sr, min_frequency= min_frequency, prediction = prediction, |
|
window_size=8, precision_bits=1 |
|
) |
|
``` |
|
![vis](https://github.com/nianlonggu/WhisperSeg/blob/master/assets/res_zebra_finch_adults_prediction_only.png?raw=true) |
|
|
|
Run it in Google Colab: <a href="https://colab.research.google.com/github/nianlonggu/WhisperSeg/blob/master/docs/WhisperSeg_Voice_Activity_Detection_Demo.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> |
|
|
|
For more details, please refer to the GitHub repository: https://github.com/nianlonggu/WhisperSeg |
|
|
|
## Contact |
|
[email protected] |