vibert-base-cased-ed

This model is a fine-tuned version of FPTAI/vibert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0617
  • F1 Micro: 0.7029
  • F1 Macro: 0.0254
  • Accuracy: 0.6459
  • Recall Micro: 0.6169
  • Precision Micro: 0.8169
  • Recall Macro: 0.0269
  • Precision Macro: 0.0240
  • F1: 0.5817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Accuracy Recall Micro Precision Micro Recall Macro Precision Macro F1
0.0696 1.0 1526 0.0711 0.6892 0.0243 0.7054 0.6737 0.7054 0.0294 0.0207 0.5573
0.0577 2.0 3052 0.0640 0.6943 0.0251 0.6398 0.6111 0.8038 0.0267 0.0236 0.5742
0.0674 3.0 4578 0.0613 0.6949 0.0252 0.6257 0.5976 0.8300 0.0261 0.0244 0.5778
0.0576 4.0 6104 0.0610 0.7006 0.0254 0.6358 0.6073 0.8278 0.0265 0.0243 0.5814
0.0387 5.0 7630 0.0617 0.7029 0.0254 0.6459 0.6169 0.8169 0.0269 0.0240 0.5817

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
183
Safetensors
Model size
115M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for nc33/vibert-base-cased-ed

Finetuned
(7)
this model