metadata
base_model: BAAI/bge-small-en-v1.5
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: What’s the total number of orders placed by each customer?
- text: I like to read books and listen to music in my free time. How about you?
- text: Get company-wise intangible asset ratio.
- text: Show me data_asset_001_ta by product.
- text: Show me average asset value.
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9915254237288136
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 7 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Aggregation |
|
Tablejoin |
|
Lookup |
|
Rejection |
|
Lookup_1 |
|
Generalreply |
|
Viewtables |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9915 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nazhan/bge-small-en-v1.5-brahmaputra-iter-10-3rd")
# Run inference
preds = model("Show me average asset value.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 8.7839 | 62 |
Label | Training Sample Count |
---|---|
Tablejoin | 127 |
Rejection | 76 |
Aggregation | 281 |
Lookup | 59 |
Generalreply | 71 |
Viewtables | 75 |
Lookup_1 | 158 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: 2450
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2317 | - |
0.0025 | 50 | 0.2478 | - |
0.0050 | 100 | 0.2213 | - |
0.0075 | 150 | 0.0779 | - |
0.0100 | 200 | 0.1089 | - |
0.0125 | 250 | 0.0372 | - |
0.0149 | 300 | 0.0219 | - |
0.0174 | 350 | 0.0344 | - |
0.0199 | 400 | 0.012 | - |
0.0224 | 450 | 0.0049 | - |
0.0249 | 500 | 0.0041 | - |
0.0274 | 550 | 0.0083 | - |
0.0299 | 600 | 0.0057 | - |
0.0324 | 650 | 0.0047 | - |
0.0349 | 700 | 0.0022 | - |
0.0374 | 750 | 0.0015 | - |
0.0399 | 800 | 0.0032 | - |
0.0423 | 850 | 0.002 | - |
0.0448 | 900 | 0.0028 | - |
0.0473 | 950 | 0.0017 | - |
0.0498 | 1000 | 0.0017 | - |
0.0523 | 1050 | 0.0027 | - |
0.0548 | 1100 | 0.0022 | - |
0.0573 | 1150 | 0.0018 | - |
0.0598 | 1200 | 0.001 | - |
0.0623 | 1250 | 0.002 | - |
0.0648 | 1300 | 0.001 | - |
0.0673 | 1350 | 0.0013 | - |
0.0697 | 1400 | 0.0012 | - |
0.0722 | 1450 | 0.0018 | - |
0.0747 | 1500 | 0.0012 | - |
0.0772 | 1550 | 0.0016 | - |
0.0797 | 1600 | 0.0012 | - |
0.0822 | 1650 | 0.0016 | - |
0.0847 | 1700 | 0.0027 | - |
0.0872 | 1750 | 0.0014 | - |
0.0897 | 1800 | 0.0011 | - |
0.0922 | 1850 | 0.0011 | - |
0.0947 | 1900 | 0.0012 | - |
0.0971 | 1950 | 0.0014 | - |
0.0996 | 2000 | 0.0014 | - |
0.1021 | 2050 | 0.0015 | - |
0.1046 | 2100 | 0.0009 | - |
0.1071 | 2150 | 0.0015 | - |
0.1096 | 2200 | 0.0013 | - |
0.1121 | 2250 | 0.0013 | - |
0.1146 | 2300 | 0.001 | - |
0.1171 | 2350 | 0.0017 | - |
0.1196 | 2400 | 0.0013 | - |
0.1221 | 2450 | 0.0008 | 0.0323 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}