SetFit with BAAI/bge-large-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-large-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-large-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 7 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Aggregation |
|
Lookup_1 |
|
Viewtables |
|
Tablejoin |
|
Lookup |
|
Generalreply |
|
Rejection |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9818 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-iter-10-4th")
# Run inference
preds = model("what do you think it is?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 8.7137 | 62 |
Label | Training Sample Count |
---|---|
Tablejoin | 128 |
Rejection | 73 |
Aggregation | 222 |
Lookup | 55 |
Generalreply | 75 |
Viewtables | 76 |
Lookup_1 | 157 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: 2450
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2001 | - |
0.0022 | 50 | 0.1566 | - |
0.0045 | 100 | 0.0816 | - |
0.0067 | 150 | 0.0733 | - |
0.0089 | 200 | 0.0075 | - |
0.0112 | 250 | 0.0059 | - |
0.0134 | 300 | 0.0035 | - |
0.0156 | 350 | 0.0034 | - |
0.0179 | 400 | 0.0019 | - |
0.0201 | 450 | 0.0015 | - |
0.0223 | 500 | 0.0021 | - |
0.0246 | 550 | 0.003 | - |
0.0268 | 600 | 0.0021 | - |
0.0290 | 650 | 0.0011 | - |
0.0313 | 700 | 0.0015 | - |
0.0335 | 750 | 0.0011 | - |
0.0357 | 800 | 0.001 | - |
0.0380 | 850 | 0.001 | - |
0.0402 | 900 | 0.0012 | - |
0.0424 | 950 | 0.0012 | - |
0.0447 | 1000 | 0.0011 | - |
0.0469 | 1050 | 0.0008 | - |
0.0491 | 1100 | 0.0009 | - |
0.0514 | 1150 | 0.001 | - |
0.0536 | 1200 | 0.0008 | - |
0.0558 | 1250 | 0.0011 | - |
0.0581 | 1300 | 0.0009 | - |
0.0603 | 1350 | 0.001 | - |
0.0625 | 1400 | 0.0007 | - |
0.0647 | 1450 | 0.0008 | - |
0.0670 | 1500 | 0.0007 | - |
0.0692 | 1550 | 0.001 | - |
0.0714 | 1600 | 0.0007 | - |
0.0737 | 1650 | 0.0007 | - |
0.0759 | 1700 | 0.0006 | - |
0.0781 | 1750 | 0.0008 | - |
0.0804 | 1800 | 0.0006 | - |
0.0826 | 1850 | 0.0005 | - |
0.0848 | 1900 | 0.0006 | - |
0.0871 | 1950 | 0.0005 | - |
0.0893 | 2000 | 0.0007 | - |
0.0915 | 2050 | 0.0005 | - |
0.0938 | 2100 | 0.0006 | - |
0.0960 | 2150 | 0.0007 | - |
0.0982 | 2200 | 0.0005 | - |
0.1005 | 2250 | 0.0008 | - |
0.1027 | 2300 | 0.0005 | - |
0.1049 | 2350 | 0.0008 | - |
0.1072 | 2400 | 0.0007 | - |
0.1094 | 2450 | 0.0007 | 0.0094 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for nazhan/bge-large-en-v1.5-brahmaputra-iter-10-4th
Base model
BAAI/bge-large-en-v1.5